

视觉软件用户手册

辰星(天津)自动化

版权所有©辰星(天津)自动化设备有限公司 2018。保留一切权利。

本手册的任何部分,包括文字、图片、等均归属于辰星(天津)自动化 设备有限公司(以下简称"本公司"或"辰星")。未经书面许可,任何单 位和个人不得以任何方式复制、修改本手册的全部或部分。除非另有约定, 本公司不对本手册提供任何声明或保证。

关于本手册

本手册作为指导使用。手册中所涉及的照片,截图等,仅用于解释和说明,与产品具体功能可能存在差异,请以具体产品为准。本手册可能因产品版本升级而更新。

商标声明

alomrobol[®], 阿童木机器人 为辰星的注册商标。

责任声明

使用本产品时,请严格遵守适用的法律。 如本手册内容与适用法律相冲突,以法律规定为准。

-,	ŕ	产品简介	1
	1.1	功能概述	
	1.2	运行环境	1
	1.3	软件安装	
二、	昦	界面说明	2
	2.1	启动界面	2
	2.2	主界面	
	2.3	菜单栏	
	2.4	工具栏	6
	2.5	快捷设置栏	7
	2.6	结果显示栏	
三、	47	图像源	9
	3.1	相机管理	9
	3.2	记录保存图像	10
	3.3	播放文件夹	
四、	辽	通讯设置	12
	4.1	TCP Server	
	4.2	TCP Client	
五、	7	流程参数设置	13
	5.1	图像设置	13
	5.2	物体选择	
	5.3	输出转换	
	5.4	发送设置	15
	5.5	工具	
	5.6	九点标定	17
	5.7	畸变校正	19
	5.8	自动计算像素比	19
六、	¥	物体参数设置	21
	6.1	斑点参数设置	21
	6.2	模板匹配参数设置	
	6.3	模板匹配 2 参数设置	23
	6.4	边缘模板参数设置	25

目录

alomrobol®

	6.5	条形码参数设置	
	6.6	二维码参数设置	
	6.7	圆查找参数设置	
	6.8	二值化参数设置	
	6.1	自定义物体参数设置	错误!未定义书签。
七、	注意	事项	31
七、 八、	注意 修订	事项 记录	31

一、 产品简介

1.1 功能概述

视觉系统 Atom Vision 是为机器视觉识别开发的软件应用程序,适用于工业 并联、串联机器人等环境,实现图像转换,颜色提取,相机标定,图像校正,物 体定位,码值读取,通信等功能。支持同时连接多个相机,处理多个流程。

1.2 运行环境

	最低配置	推荐配置		
操作系统	Windows7/10	(32/64 位操作系统)		
CPU	Intel Pentium IV 2.0 GHz 或以上	Intel i5-4200M 2.5GHz 或以上		
内存	2GB	4GB 或更高		
显卡	显存 1G 以上显卡			
网卡	Intel Pro1000 系列以上性能网卡			

1.3 软件安装

- 1、 打开软件安装包, 双击 Atom Vision. exe 开始安装。
- 2、 安装软件之前,需要设置软件的安装路径,确认设置后,点击"下一步" 软件进入安装过程。
- 3、 软件安装完成后, 插入加密狗, 即可正常使用视觉软件。

二、 界面说明

2.1 启动界面

双击软件图标,启动软件。软件开启时默认开启图像界面,包含菜单栏、状态栏、图像显示框,如图 2-1 所示。

图 2-1 启动界面

- 发送区域:选中后框取图像显示窗口中的发送区域。识别出的物体中心 位置只有在发送区域内才会被标记并发送。
- **放大**:放大当前显示的图像。
- **缩小:** 缩小当前显示的图像
- **自适应**:设置当前显示的图像自适应界面大小。
- **最大化:**最大化图像显示窗口,如图 2-2 所示。

- 软件启动后自动连接上次连接的相机,运行上次加载的作业文件,并开 始运行识别物体。
- 如果是首次启动,需要连接相机或加载图片文件夹。
- 点击图像显示框右上角"最大化"按钮,"最大化"按钮弹起,进入主
 界面。

2.2 主界面

主界面由菜单栏、工具栏、状态栏、图像显示框、快捷设置侧边栏、结果 显示栏组成,如图 2-3 所示。

图 2-3 主界面

- 图像显示框:显示识别图像,显示物体标记,图像分辨率,感兴趣区域 (图 2-3 中黄色框,用于框定图像识别区域)、发送区域(图 2-3 中蓝 色框,用于框定识别坐标发送区域),以及放大、缩小、自适应图像、 最大化图像显示框按钮。
- 2. 快捷设置侧边栏:选择当前流程,选择当前识别物体,设置当前物体的 识别灰度范围(blob/二值化物体有效)。

- 结果显示栏:显示当前图像识别出的物体信息。每条代表一个物体,包括物体 ID、位置坐标信息、物体旋转角度、使用的识别方式等识别输出信息。列表中的坐标信息即为发送的识别结果。
- 状态栏:显示工具信息,总流程时间,识别时间,通讯状态,图像缩放 比例。

2.3 菜单栏

菜单栏提供了视觉软件的文件、编辑、图像、系统、显示、帮助选项。

文件

文件子菜单包含新建作业、打开作业、保存作业、作业另存为、下载作 业、退出等操作选项。

- 新建作业功能可以新建一个作业文件并加载为正在编辑的作业。新 建的作业加载默认的初始化参数,点击保存作业后作业被保存到相 应的目录。
- 打开作业功能是对已经保存的作业重新加载。在弹出的作业文件路 径选择窗口中选中需要打开的*. job 作业文件并打开,加载之前保存 的作业文件,系统按照加载的参数连接相机、识别物体等设置。
- 保存作业和作业另存为功能对当前的作业进行保存。设置的参数保存到*. job 文件中。
 - 若未打开过 job 文件或第一次使用保存功能,则会弹出窗口,选 择保存路径并设置文件名称。
 - 若已打开过 job 文件,再使用保存功能,则直接保存会覆盖当前 打开的 job 文件。
 - 退出视觉软件时,如果作业尚未保存,会弹出提示框提示作业未保存。
 - 作业另存后,默认加载另存后的作业。
- 下载作业功能可以把当前加载的 job 文件下载到 Atom Motion 控制器里。把计算机与 Atom Motion 控制器建立连接,保存作业后点击下载作业,作业会被下载到 Atom Motion 控制器里。
- 5. 点击退出按钮,弹出退出确认提示,点击确定后退出软件。

● 编辑

编辑子菜单包含流程管理、流程设置、物体管理、物体设置、通信管理、第一张、上一张、运行、下一张、最后一张、测量线段、测量矩形等。

● 图像

图像子菜单包含相机配置、保存图像、记录/播放设置。

- 点击相机配置按钮,弹出相机配置界面,设置连接相机和相机的部
 分参数。
- 点击保存图像按钮,保存当前图像到文件夹中。
- 点击记录/播放设置按钮,弹出记录/播放设置界面,选择播放栏,
 设置播放图像文件夹后,通过设置图像源(编辑->流程设置->图像
 栏->图像源)可对本地图像进行识别操作。详见 3.3 节。
- 系统

该子菜单下有登陆、修改密码、系统配置、风格、语言等选项。

- 登陆:用于用户登陆软件,登陆后可以修改作业参数,编辑保存各项 设置。默认情况下账户管理功能不开启,修改配置文件后开启该功 能。
- 修改密码:用于修改用户密码,用户需输入正确的账号和密码。
- 风格:设置软件的界面风格,包括深空黑、月光银。
- 语言: 切换界面语言, 包括中文、英文。设置后下一次开启生效
- 显示

显示子菜单包含主视图、图像视图、快捷参数设置侧边栏、输出信 息窗口、作业工具栏、运行工具栏、测量工具栏、标记等。

- 主界面包含主要的设置。
- 图像视图是对主界面简化后的界面。
- 选中想要显示的标记会在图像上显示相应的标记。
- **辅助线标记:**标记出图像的中心线;
- **识别位置标记:**标记出识别出的物体位置;
- **作业名称标记:**标记出当前加载的作业名称;

- 坐标系标记:显示坐标系的位置及方向;
- 物体边缘标记:标记出识别出的物体边缘;
- 特征点标记:标记出图像上的特征点。
- 帮助

该子菜单包含帮助、关于选项。

- 帮助: 查看 Atom Vision 的操作手册, 从中获取设置方法;
- 关于: 查看当前的软件版本及版权信息。

2.4 工具栏

工具栏包含常用的用户操作,包含文件工具栏、运行工具栏、测量工具栏、 参数设置工具栏等。如图 2-4 所示。

文件工具栏包括:

- **新建作业:**新建一个作业。
- 打开作业:打开一个已存在的作业。
- 保存作业:保存当前作业。如图 2-5 所示。

图 2-5 文件工具栏

运行工具栏包括:

- **第一张**:图像源是文件夹时,点击处理第一张图像。
- **上一张**:图像源是文件夹时,点击处理上一张图像。
- 运行/暂停: 点击执行/暂停流程。
- **下一张:**点击处理下一张图像。
- **最后一张:**图像源是文件夹时,点击处理最后一张图像。如图 2-6 所示。

图 2-6 运行工具栏

测量工具栏包括:

- 测量线段:选中后在图像窗口拖动,测量线段的长度和角度(与 x 轴的 夹角),结果标记到图像显示框并显示到状态栏。
- 测量矩形:选中后在图像窗口拖动,测量矩形的长、宽、角度(与 x 轴的夹角)、面积等数据,结果标记到图像显示框并显示到状态栏。如图 2-7 所示。

图 2-7 测量工具栏

参数设置工具栏包括:

- 流程参数设置:包括图像设置、物体选择、输出设置,通讯设置,工具等。如图 2-8 所示,详见第五章。
- 物体参数设置:包括建立的各种识别物体,识别模板,图像处理操作等。
 如图 2-8 所示,详见第六章。
- 通信管理:设置通信方式,支持 TCP 通信,用于视觉软件与控制器之间
 的通讯,如图 2-8 所示,详见第四章。

图 2-8 参数设置工具栏

2.5 快捷设置栏

快捷设置侧边栏主要包括流程选择、物体选择、当前物体灰度范围设置等, 如图 2-9 所示。

快捷设置		6 ×
流程:	流程0	
物体:	物体0	
	当前物体的灰度设置:	
小值:		_
大值:		-

图 2-9 快捷设置栏

- 选择流程:选择需要操作的流程。如果使用多个相机进行识别,可创建
 多个流程对应不同相机,处理不同的物体。
- 选择物体:选择需要识别的物体,选择后只识别这一种物体。如果想要 识别多个物体,在"流程"-->"物体栏"中添加多个物体到流程中。
- **灰度设置:**适用于有灰度参数的物体的灰度范围设置(0~255)。

2.6 结果显示栏

结果显示栏显示识别输出的结果,包含斑点识别结果、模板匹配结果、读码结果、自定义物体等。如图 2-10 所示。

	全i	部	斑点	ī	说明					
	ID		х		γ		角度	长度	宽度	
1	0	590.38	4 mm	536.5	86 mm	-1.6	48 °	735.336 pixel	296.64 pixel	3977

图 2-10 结果显示栏

结果显示栏显示的结果是输出转换过的结果,和通讯输出的结果一致。

三、 图像源

图像源包括相机和图像文件夹两种,连接相机后或选择图像文件夹后,才可 以运行识别物体。

3.1 相机管理

当图像来源为相机时,相机管理(菜单栏"图像"->"相机管理")用于管 理相机设备,可以查找相机、连接相机、断开相机、显示相机信息、设置相机属 性,如图 3-1 所示。连接相机后,选择图像源(菜单栏"编辑"->"流程"->"图 像栏"->"图像源选择")。图像源设置后,可以获取相机图像。

1111日11日11日11日11日11日11日11日11日11日11日11日1				?	>
设备列表 i	查找设备				
 GigE Basler acA1300-60gn Dahua Technology:3/ 	n# 💉	Property > 常用属性 曝光时间	Value		us
✓ 接口信息 描述 物理地址		硬触发使能 消抖时间			us
IP地址 子网掩码 默认网关					
▼ 设督信息 设备名称 物理地址 IP地址					
子网掩码 默认网关 厂商					
型号 序列号					

图 3-1 相机设置

- 1. 查找相机:单击查找相机按钮,查找到的相机会显示到相机列表里。
- 2. 连接/断开相机:单击连接/断开相机按钮,连接/断开相机。
- 显示设备信息:单击相机名称,设备信息里显示选中的相机设备信息, 包括相机物理地址、IP地址、子网掩码、默认网关等相机信息,接口信 息栏显示本地接口信息。
- 相机属性设置:点击选中相机后,相机属性页面更新当前相机的参数。
 设置相机的曝光时间、硬触发使能、消抖时间等相机属性,设置完成后断开相机后重新连接,设置被保存到相机里。

硬触发:点击选中硬触发使能选择框,使相机处于硬触发状态。相机设置为硬触发时,点击运行按钮准备获取图像,当硬触发一次获取的图像会显示到图像界面。

注意事项:如果想要保存相机的参数,需要断开相机后重新连接;或者通过 相机客户端设置好相机的参数后再连接相机。

3.2 记录保存图像

记录保存图像主要把当前处理的图像保存到本地文件夹中("菜单栏"->"图像"->"记录/播放设置"),如图 3-2 所示。

	?	×
记录 纸粉		
记录路径		
./saved_pio		
- 保存图像参数		
图像格式: bmp 颜色: RGB		
连续保存图像		
□ 连续保存 500 💌 ms		
OK	Cancel	-

图 3-2 记录设置

- 1. 选择记录路径,图像保存到设置的路径中。
- 点击选中连续保存选择框,设置连续保存间隔时间,每间隔设置的时间 后保存一张图像到文件夹。

3.3 播放文件夹

当图像来源为本地文件夹时,记录/播放设置(菜单栏"图像"->"记录/播放设置" ->"播放栏")用于设置图像所在本地文件夹,使软件可以读取本地图像。如图 3-3 所示,

	?	\times
记录 播放		
播放路径		
图像计数:		
播放延时		
500 x ms		
播放模式		
OK	Cancel	

图 3-3 播放设置

- 播放路径: 当图像来源为本地文件夹时,将播放路径设置为本地图像所 在路径可播放本地图像,支持软件对本地图像进行操作。
- 记录设置:点击选中连续保存图像选择框,可将当前获取到的图像保存 到记录路径下。默认路径为安装目录下的 saved_pic 文件夹。

四、 通讯设置

通讯设置主要包括 TCP 通讯设置, 如图 4-1 所示。

🔕 通信设置			?	\times
+ –	停止	已连接客户端:		
✓ TCP 服务端 3000 TCP 客户端	监听成功			
		🗌 16进制接收	清空	
		🗌 16进制发送	发送	

图 4-1 通信设置

保存通讯:

建立好通讯方式后需要添加到流程里,通讯才会保存,下次开启后自动连接 到流程里的通讯端口。

4.1 TCP Server

进入通讯设置界面,点击选中 TCP 服务端,点击"+"按钮,添加一个新的 服务端,输入端口号点击"OK"添加。点击选中服务端的项,点击"监听"按 钮开始监听。

4.2 TCP Client

进入通讯设置界面,点击选中 TCP 客户端,点击"+"按钮,输入 IP 和端口号,点击"OK"添加一个客户端。点击选中客户端中的项,点击"连接"按钮连接服务端。

五、 流程参数设置

流程是指软件运行时的识别流程,可以在连接多个相机时添加多个流程,不同的流程里处理从不同的图像源获取的图像,进行识别、转换、输出等操作。

流程参数设置包括图像设置、物体选择、输出转换,通讯设置,工具等。

5.1 图像设置

图像设置包含对图像源(相机/本地文件夹)的选择、图像翻转、图像转换、 图像校正、颜色提取等功能。如图 5-1 所示。

🔕 流程设置		?	×
^{流程0} 图像	★ 图像源设置 选择相机: [关闭])	^
物体	曝光时间: 0 導計时间: 0 ○ 満掛时间: 0 ○ 硬触发: □ ○		
输出	图像方向		
通讯	□ 垂直翻转		
工具			
	駅巴提収 颜色提取: □ 启用 都色空间: RGB		
	通道一下限: 0 ↓		
	通道二下限: 0 ♀ 通道二下限: 255 ♀		
	通道三下限: 0 ↓ 通道三下限: 255 ↓		
			~
	Close	Å	pply

图 5-1 流程图像设置

- 图像选择:选择连接到的相机或设置好的图像文件夹,选中相机后可以 设置相机的曝光时间、硬触发、消抖时间参数,每个流程只能加载一个 图像源。
- 2. 图像翻转:对图像进行水平方向或竖直方向的翻转;
- 图像校正:图像校正使能按钮;勾选前需要在输出转换里设置好畸变校 正参数;

- 4. 图像转换:可以选择原始图像、灰度图像和 R、G、B 通道的灰度图像;
- 5. **颜色提取**:勾选启用后生效,选择一个颜色空间,设置三个通道的上下 限值;

5.2 物体选择

物体设置包含对当前流程中识别物体的选择,可添加、删除、清空当前流程中需要识别的物体。

🔕 流程设置						?	\times
流程0 +							
图像	添加到流程		物体列表				
	物体0		名称	ID	类型		
物体			物体()	0	Blob类型	_	
		•					
输出		ញា					
通讯							
一丁目							
工兵							
					Close	Apj	ply

向流程中添加物体之前需要添加物体到工程中,详见第6章。

图 5-2 流程物体设置

选中物体列表中的物体,点击添加按钮,将物体添加到流程中。物体加入流 程后即可对该物体进行识别,同时添加多个物体可以实现多物体识别,如图 5-2 所示。

选中流程中的物体,点击移除按钮,物体被移除该流程。点击清空按钮,流 程中的物体被清空,重新添加物体。

5.3 输出转换

输出设置是对识别后的输出数据进行筛选和转换的参数设置,如图 5-3 所示。

🗴 流程设置		? ×
流程0	+	
图像物体	坐标转换 □ XY互换 □ 坐标系居中 □ 角度反转	比例设置 比例: 1.000 ♀ pix/mm 高度: 0.000 ♀ mm
PATE.		自动计算像素比
输出	补偿 角度补偿 (角度) : 0.000 붖	自动像素比参数 像素个数:
通讯	X补偿 (毫米): 0.000 全 Y补偿 (毫米): 0.000 全	水平面长度: 0.000 🗼 mm K面高度: 0.000 🗼 mm
マ日		K面长度: 0.000 🗣 mm
上共	标定	输出角度转换
	□ 9点标定 □ 畸变校正	角度范围: 设置差值需是360的约数.
	九点标定	-360.000 🔹 360.000 🔹
	輸出排序	
	□ X轴 译序	
	□ ¥轴 隆序	
		¥
		Close Apply

图 5-3 流程输出设置

- 坐标转换:对输出坐标值和角度转换。XY 互换互换 X 和 Y 的值,坐标系
 居中把视觉坐标系 0 点设置到图像的中心,角度反转反转角度的正负。
- 2. 比例设置:像素数/实际距离,设置图像与实际物体之间的大小关系。
- **补偿:**对输出坐标补偿一定距离或角度,按照物体方向补偿(物体坐标系)。
- 4. 9点标定:标定视觉输出坐标和世界坐标系,采用多点标定。
- 5. 畸变校正:图像畸变校正设置,校正相机镜头引起的图像畸变。
- 相机 IO: 启用相机 IO, 相机识别到物体后可输出高/低电平, 电平持续时 间可修改, 通过相机的输出线输出。
- 输出角度转换:把识别结果的角度转换到设置的角度范围内,设置的范围需是 360 的约数。
- 8. 输出排序:根据坐标值对识别结果排序。

5.4 发送设置

通讯设置中包含对通信的选择、相机网络触发标志以及数据发送格式的设置。 如图 5-4 所示。

^{允柱U}	+ 条件检测	相机IO
图像		□ 启用相机IO
Hm kt	检测条件: 识别个数是否大于0	持续时间: □ 🔶
12/14	UK和五: UK NG输出: NG	■ 有效电平: (代电半有效) 说明·识别个数大于0时输出有效电平
输出	TCP设置	
通讯	通信选择: <u>[TCP Server</u>] 网络触发标志: atom	·][3000]
7 8	数据格式参数	
上共	Image 数据总头:	
	型据总结尾符:	
	単项数据参数:	; ATTR: ATTR%; ID: ID%]

图 5-4 流程通讯设置

其中数据格式参数含义如下:

- 1. X%:视觉数据 X 坐标。
- 2. Y%:视觉数据 Y 坐标。
- 3. A%:视觉数据角度坐标。
- 4. ATTR%:识别物体有无标志。
- 5. **ID%:**识别物体 ID。
- 6. INFO%: 识别物体的字符信息。

5.5 工具

工具中包含角度计算器、像素比计算器,可为调试过程提供便利。如图 5-5 所示。

🔕 流程设置		?	\times
流程0			
图像	角度计算器(x, y) 点1坐标: 0.000 ♀ 0.000 ♀		^
物体	点2坐标: 0.000 🔄 0.000 🚖 夹角: 0.000 € 计算		
输出	像素比计算 实际长度: 1.000 €		
通讯	像素个数: 1 ÷ 比例: 1.000 ÷ 计算		
工具	自动计算角度 0%		
	开始 完成 夹角: 0.000		
			~
	Close	App.	ly

图 5-5 流程工具设置

- 角度计算器:把物体放到相机视野中识别出第一个点的坐标,移动传送带,识别出第二个点的坐标,点击计算,计算出传送带和相机视野之间的夹角。
- 2. 像素比计算:输入物体实际长度和物体在相机视野中的像素个数,点击 计算,计算出像素比,值为一个大于1的数。
- 自动计算角度:使视觉处于检测状态,点击开始按钮,移动传送带,使物体从相机视野中通过,点击完成,计算出传送带和相机视野之间的夹角。

5.6 九点标定

菜单栏"编辑"→"流程设置"→"输出栏",在标定分块中选中"9点标 定"启用九点标定。点击9点标定按钮,弹出9点标定设置界面,分别输入视 觉坐标系下和世界坐标系下的9个点的值,点击标定按钮生成标定参数,误差 越小越好。运行识别时,输出的结果为9点标定后的结果。设置界面如图 5-6 所示。

🔊 9点	标定			? ×
	视觉坐标X (mm)	视觉坐标¥(mm)	世界坐标Y(mm)	世界坐标X(mm)
A :	0.000 🚖	0.000	0.000	0.000
B :	200.000	0.000	200.000 🜲	0.000
С :	200.000	200.000	200.000 😫	200.000
D :	0.000	200.000	0.000	200.000
E :	100.000	100.000	100.000	100.000
F :	100.000	400.000	100.000 🗘	400.000
G :	400.000	400.000	400.000	400.000
Н :	400.000	100.000	400.000	100.000
I :	300.000	300.000	300.000	300.000
标定约	结果	标定误差		
角度的	偏移: 0.000	✤ X方向误差:	0.000 🚖	标定
X方向 X方向)偏移: 0.000)偏移: 0.000	 ♥ ♥ ♥ ♥ ♥ ♥ 	0.000	退出

图 5-6 九点标定参数设置

设置步骤如下:

- 1. 记录视觉坐标系下的9个点(相对位置固定不变,单位:mm)和世界坐标 系下的9个点;
- 2. 点击"九点标定"按钮;
- 进入九点标定界面,输入视觉坐标点9个点的坐标(单位:mm)和世界坐标中的9个点的坐标(单位:mm);
- 4. 点击"标定"按钮,标定的中间结果显示在左下方;
- 运行作业时(勾选"9点校正"),视觉识别物体后输出的结果即为9点 标定后的结果。

标定结果的参数含义如下:

- 1. theta 值表示两个坐标系之间的角度差(单位: °);
- 2. delta_x,和 delta_y 值表示同一个物体在两个坐标系中的相对距离;
- error_x 和 error_y 值表示标定结果在两个方向上的误差,误差越小,标 定结果越准确;

如果提前知道 9 点标定的中间结果 theta, delta_x 和 delta_y 的值,输入 这三个参数值到左下方即可。

注意事项:坐标的单位为mm, theta 单位为 °。

5.7 畸变校正

畸变校正主要校正由于相机镜头引起的图像畸变,设置界面如图 5-7 所示。

🔕 畸变标定			? ×
图片路径			
			计数:
标定参数			
标定板类型: 棋盘] 物理尺寸:	20	-
	高:	6	-
	宽:	6	•
标定结果			
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			
			标定
			退出

图 5-7 畸变校正设置

1. 点击路径选择按钮,弹出路径选择弹窗,设置保存好的几张标定板图像。

2. 选择标定板类型,设置标定板的大小规格。

3. 点击标定按钮,标定结果和标定误差显示到输出框里。

在流程输出设置栏里勾选上畸变标定选择框后,输出的识别结果是校正过的 结果;在流程图像设置栏里勾选上图像畸变校正按钮后,图像处理显示的即是校 正后的图像。

5.8 自动计算像素比

自动计算像素比是根据设置的物体高度自动计算像素比的值。设置界面如图 5-8 所示。

一比例设置	1
比例:	1.000 🜩 pix/mm
高度:	0.000 🜩 mm
	自动计算像素比
白动像素	民比参数
像素个数	ų: 0 🔷 pix
水平面长	€度: 0.000 뢎 mm
H面高度	: 0.000 🗣 mm
H面长度	: 0.000 🖨 mm

图 5-8 自动计算像素比

设置自动像素比参数,设置高度参数,点击自动计算像素比按钮,更新比例参数。自动像素比参数只需要开始的时候设置一次,之后设置物体高度参数点击 计算像素比按钮即可。自动像素比参数设置如下:

- 1. 高度: 物体高度面距离水平面的距离;
- 2. 像素个数:固定视野下的像素个数(单位:mm,比如相机视野的宽度为 1280 pix);
- 3. 水平面长度:固定视野下水平面处的实际长度(单位:mm);
- 4. H面高度:选择一个高度平面(H面),测量这个平面的实际高度(单位:mm);
- 5. H面长度: 固定视野下H面处的实际长度(单位: mm);

六、 物体参数设置

物体是指需要识别的相机视野中的物体,每个物体都有一种识别方法,如: blob、模板匹配、二维码等。物体建立好之后需要加入到流程中才可以进行识别。

软件中集成的识别方法有:斑点、模板匹配、模板匹配 2、形状模板匹配、 条形码、二维码、圆查找、二值化、用户自定义等类型,根据识别目标的特点选 择需要的识别方式。如图 6-1 所示。

🔕 物体	参数设置						?	\times
物体0	物体01	物体02	物体03	物体04	物体05	物体06	+	
基本参数	1 运行	参数 结	果输出					
一运行参	数							
blob:	109392	2	-		328	176		-
灰度:	127		•		251			-
长度:	588		-		883			-
宽度:	238		-		357			÷
最大角 「 长短轴	實: 90_ 切换: □ 选取区域	(辅助功能)	•	C I	lom 可童木	€ 869 0bc 机器人	Q € * 476	2

图 6-1 物体参数设置

6.1 斑点参数设置

斑点法用于识别物体与背景有明显区分的物体,参数设置如图 6-2 所示。

🔕 物体	参数设置						?	\times	🔕 物体	参数设置						?	×
物体0	物体01	物体02	物体03	物体04	物体05	物体06	+		物体0	物体01	物体02	物体03	物体04	物体05	物体06	+	
基本参数	刘 运行	参数 结	果輸出						基本参望	汝 运行	参数	结果输出					
配置参	数								运行参	*数							
ID:	0	-							blob:	10939	2	\$		328	3176		÷
平滑处	理: 🗌								灰度:	127		\$		25	1		\$
									长度:	588		\$		883	3		\$
									宽度:	238		\$		35	7		\$
															œ	Q	2
- ROI 🖂	或								最大角	度: 90		\$			869	* 476	
选取区	[域:	- 12							长短轴	切换: 🗌					<u>Manan</u>		
										洗取区词	(辅助功能	<u>ل</u> ا)				B	
ROI_x:	100							\$		744 - 17 Mar 19			g	lom	OUC	J	
ROI_y:	100							•						阿童木	机器人	1	
ROI_w:	760							÷									^
ROI_h:	1080							÷									

图 6-2 Blob 算法参数设置

- 1. 平滑处理: 是否进行平滑预处理操作。
- 2. ID: 当前物体的 ID。
- 3. ROI 区域: 识别的图像感兴趣区域。
- 4. Blob 面积:识别目标的 Blob 面积范围。
- 5. 长度: 识别目标的长度范围。
- 6. 宽度: 识别目标的宽度范围。
- 7. 灰度: 识别目标的灰度范围。
- 8. 最大角度: 识别目标的最大角度。
- 9. 长短轴切换:是否切换长短轴(角度转换)。

当物体不好识别时,如物体反光比较强烈、或图像比较不清晰、光照不稳定 时可使用平滑预处理,最小灰度值设为 5~8 左右,使用平滑预处理后耗时比普 通模式要高。

6.2 模板匹配参数设置

模板匹配算法用于识别有明显图案特征的物体,参数设置如图 6-3 所示。

图 6-3 模板匹配参数设置

模板匹配算法分为训练和匹配两个阶段,训练阶段会提取模板图像特征,并 将特征存储,匹配阶段是根据训练特征在图像中搜索目标位置。

- 1. **ID:** 当前物体的 ID。
- 2. 金字塔层数:设置图像金字塔的层数,在设置模板之前更改参数。
- 匹配中心:默认为模板图像的中心,设置识别输出点在模板图像的位置, 在设置模板之前更改模板中心参数。
- 4. 摆动角度:设置当前物体识别的角度范围(从负到正)。
- 5. **差值匹配值:**默认 25,范围 10[~]40,值越大容忍的形变越大,但会引入误检。
- 匹配点阈值: 默认 0.3, 范围 0.1[~]0.5, 值越低, 越容易识别, 但精度会下降。
- 形变阈值: 默认 2, 范围 1[~]12, 值越大, 越可识别到更大的形变, 但 精度会差。
- 梯度匹配值: 默认 15,范围 10[~]40,值越大,容忍越大的梯度变化, 但精度会下降。
- 匹配打分值:默认 0.65,范围 0^{~1},值越低,越容易识别,但精度会下降。
- 10. **模糊补偿:** 默认 5, 范围 0[~]20, 值越大, 容忍越大的模糊度, 但精度会下降。

设置模板的常用方法如下:

- 1. 把当前设置的物体添加到流程里;
- 点击选取区域按钮,选取区域按钮被按下,在图像显示框中框取物体, 点击空白处生效;
- 3. 模板设置界面的模板图像显示区域显示框取的图像,并生成模板。
- 点击橡皮擦工具,调整橡皮擦的大小,擦除不需要的特征,点击生产模 板按钮,重新生成模板。
- 5. 点击清除橡皮擦按钮,清除上次编辑的擦除区域,可重新编辑擦除区域。

6.3 模板匹配 2 参数设置

模版匹配 2 算法是 Atom Vision 提供的第二种模板匹配方法。常用参数设置 如图 6-4 所示。

< 🔘 物体参数设置	? ×
物体0 物体01 物体02 物体03 物体04 物体05 物体06	+
基本参数 模板参数 运行参数 结果显示	
运行参数	
角度范围: 0 😫 ——————————————————————————————————	*
尺度范围: 1.00 🗘 1.00	-
最小分数: 0.50	-
最大匹配个数: 1	-
亚像素精度: 亚像素高精度	
最大重叠率: 0.50	•
- 极性: 不忽略	

图 6-4 模板匹配 2

模板匹配 2 的参数含义如下:

- 1. **ID:** 当前物体的 ID;
- 2. 自动阈值: 自动设置边缘阈值和长度阈值;
- 3. 边缘阈值:边缘对比度大于阈值的边缘会被保留,作为特征。
- 4. 长度阈值:边缘长度大于阈值的边缘会被保留,作为特征。
- 金字塔层:默认情况下不需要调节,内部会自动计算。对于一些场景识别不稳定时可以手动设置该参数。
- 匹配中心:默认为模板图像的中心,如果手动设置匹配中心需要在设置 模板之前修改匹配中心参数。
- 7. 角度范围:可识别的角度范围,适当的设置可以提高识别速度。
- 8. 尺度范围: 识别物体的大小缩放范围。
- 最小分数:目标分数大于设置的值时才会输出,适当提高分值可以提高 识别速度。
- 10. 最大匹配个数:设置值为0时,算法输出所有找到的目标,设置值大于0时,算法输出不大于设置值数目的目标。
- 亚像素精度:像素精度,适用于精度要求一般的场景。亚像素精度,精 度有所提升,耗时基本不影响。亚像素高精度,计算得到更高的精度, 稍微增加耗时。
- 12. 最大重叠率:有多个目标匹配到时,重叠率超过设置的值时,只保留分数较高的目标。
- 13. 极性: 忽略极性或者不忽略极性。

模板匹配 2 的设置方法和模板匹配的设置方法基本一致。

6.4 边缘模板参数设置

边缘模板匹配算法用于识别有清晰边缘的物体。设置界面如图 6-5 所示。

图 6-5 边缘模板匹配

各个参数含义如下:

- 1. ID: 当前物体的 ID。
- 精度阈值:边缘特征个数,默认值 30。模版图像越大,形状越复杂,值 越大;模板图像越小,形状越简单,值越小。
- 3. 模糊阈值: 默认值 60。
- 4. 对比阈值: 默认值 30。
- **摆动角度:** 识别目标与模版的角度差(从负到正),默认值 180 度(-180~180)。

6. **打分阈值:** 满分 100 分,反映识别目标与模版的相似程度。

边缘模板匹配的设置方法和模板匹配的设置方法基本一致。

6.5 条形码参数设置

条形码方法用于识别图像中的条形码内容。参数设置如图 6-6 所示。

🚺 物体参数设	野田					?	\times
物体0 物体0	01 物体02	物体03	物体04	物体05	物体06	+	
基本参数 这	行参数 纤	吉果输出 🛛					
一识别类型 —							
] Code93码		🗌 Code39	码	🗌 C a	ode128码		
🗌 Codebar码	j	🗌 Itf码		E E	m码		
运行参数							
降采样倍数:	1						÷
宽度范围:	100	-			300	-	÷
灰度:	0	-			255	-	÷
超时时间:	500					-	÷
运行模式:	快速模式					(

图 6-6 条形码参数设置

- 1. 识别类型: 支持的条形码类型;
- 将采样倍数:查找条形码区域时的缩小倍数,用于找到较大的条形码区域;
- 3. 宽度范围: 识别目标的宽度在设置的范围内;
- **灰度:** 条形码所在的灰度范围,用于区分条形码和背景,找到准确的条 形码区域;
- 5. 超时时间: 识别最大时间, 在此时间内没有识别将不再识别;
- 6. 运行模式: 识别条形码时的速度模式;

6.6 二维码参数设置

二维码方法用于识别图像中的二维码内容。参数设置如图 6-7 所示。

)物体	参数设置						?	\times
勿体O	物体01	物体	02 物体03	物体04	物体05	物体06	+	
基本参数	数 运行	行参数	结果输出					
识别却	类型 ——							
🗹 QR	码		🗌 Pdf417	码	🗌 D :	ataMatrixਔ⊑	}	
运行者	参数							
极性:		任意					[
降采样	¥倍数:	1					ŀ	÷
码宽范	11月:	60	÷			200	ŀ	÷
超时时	间:	500					ŀ	+
运行模	莫式:	普通模式					[

图 6-7 二维码参数设置

- 1. 识别类型: 支持的二维码类型;
- 2. 极性: 用去区分二维码和背景;
- 3. 将采样倍数:查找二维码区域的缩放倍数,用于找到较大的二维码区域;
- 4. 码宽范围:二维码区域大小参数,用于找到二维码区域;
- 5. 超时时间: 识别时间大于设置的时间,将不再继续识别;
- 6. 运行模式:用于设置识别的速度;

6.7 圆查找参数设置

圆查找用于识别图像中的圆,设置界面如图 6-8 所示。

🔕 物体参	数设置						?	×
物体0 🕴	肳体01	物体02	物体03	物体04	物体05	物体06	+	
基本参数	运行都	動 结	果输出					
一运行参数	Į —							
半径:	100							÷
缩放:	0.80)						÷
灰度阈值	i: 100							÷
圆度阈值	[: 255							÷
重叠阈值	(: 0.50)						÷

图 6-8 圆查找

- 1. 半径: 查找圆的半径;
- 2. 缩放:查找圆在设置半径下的缩放范围;
- 3. 灰度阈值: 查找圆边缘的灰度;
- 4. 圆度阈值: 接近圆的程度;
- 5. **重叠阈值:**查找到多个圆形时,重叠率超过设置的值时,只保留最接近圆的目标。

6.8 边缘查找参数设置

边缘查找用于查找图像中的边缘,输出边缘的长度,位置,角度等信息,参数设置如图 6-9 所示。

🔕 物体参数设) 四	? ×
物体O Obje	ct01 物体02 +	
基本参数 〕	运行参数 结果输出	
运行参数		
边缘阈值:	60	*
长度阈值:	60	* *
加速等级:	1	-

图 6-9 边缘查找设置

各个参数含义如下:

- 1. 边缘阈值: 筛选是否是边缘, 大于设置的值的被认为是边缘;
- 2. 长度阈值:大于设置的值的边缘长度被输出;
- 3. 加速等级: 算法加速设置, 数值越大速度越快。

6.9 二值化参数设置

二值化用于对图像做二值化操作,参数设置如图 6-10 所示。

🔕 物体参	数设置						?	\times
物体0 1	勿体01	物体02	物体03	物体04	物体05	物体06	物体07	
物体0 4 基本参数 运行参数 最小阈值 最大阈值 反转像素	勿体01 这行 页 重: 100 重: 255 重: □	物体02 参数 结	物体03	物体04	物体05	物体06	物体07	

图 6-10 二值化参数设置

二值化参数含义如下:

- 1 最小阈值:最小灰度阈值;
- 2 最大阈值:最大灰度阈值;
- 3 反转像素:反转二值化目标和背景的像素值。

6.10 自定义物体参数设置

自定义物体是由用户自定义识别物体的操作步骤,参数设置如图 6-11 所示。

1体02	物体03	物体04	物体05	物体	506	物体07	物体08	+			
基本参 - 运行 - 顺序	·数 运行 参数 执行	参数 结	果输出								
- 操作	步骤		N/ 10	7				14 T TU			
	治称		突型			冶称	3	ĘΨ			
					•		物体	0	Blob类	型	
					物体	01	模板匹配	6			
					物体	02	模板匹配	22			
				1	物体	03	边缘匹配	3			
					物体	04	二维码				
				Û	物体	05	条形码				
					Hm It.	06	国体法	,	~		

图 6-11 用户自定义设置

二值化参数含义如下:

- 1 运行参数:设置自定义操作里的执行流程,是顺序执行还是并列执行;
- 2 操作步骤:从物体列表里选择操作步骤,添加到操作步骤里。

七、 注意事项

当软件出现无法发现或使用相机问题时,请检查以下要求:

- 网线是否连接,
- 相机 IP 地址和本地 IP 地址是否在同一个网段,
- 相机触发模式是否设置正确,
- 相机驱动是否安装并且有效。

当软件可以发现相机,但无法连接时,请检查:

● 相机是否已被其他客户端控制。

八、 修订记录

序号	Atom Vision版 本号	日期	修订记录		
1	1. 6. 0	2019/7/7	初始版本		
			1. 添加中英文切换		
			2. 添加图像显示背景		
2	1. 7. 7	9010/11/99	3. 添加图像颜色提取		
		2019/11/22	4. 添加畸变校正		
			5. 添加多流程、多相机支持		
			6. 添加读码功能		
3			1. 添加圆查找		
			2. 添加边缘查找		
			3. 添加二值化		
	1. 9. 1	2020 /E /12	4. 添加模板匹配 2		
		2020/ 3/ 13	5. 添加自定义物体		
			6. 添加大华相机支持		
			7. 优化识别速度		
			8. 优化界面设置		

九、 获得支持

您还可以通过以下途径获得支持:

- 网站支持----访问 <u>www.tjchenxing.com</u> 获得相关技术支持。
- 热线支持----通过 022-65181003 直接联系我们。
- 邮件支持----反馈邮件到 <u>public@tjchenxing.com</u>,我们的支持人员会及时回复。