

阿童木机器人 并联销量遥遥领先

Ц

ТП

辰星(天津)自动化设备有限公司

2020.02第4版

声明

本手册适用于辰星(天津)自动化设备有限公司生产阿童木 Delta 型号机器人。

本手册中与产品有关的规格和信息如有改动, 恕不另行通知。本手册中提出的所有陈述、 信息和建议均已经过慎重处理, 但不保证完全正确。用户必须对其应用任何产品负全部责任, 对于因本手册而造成的损失不负任何责任。

本手册所有内容的解释权属辰星(天津)自动化设备有限公司。

本手册未对任何一方授权许可,不得以任何方式复制和拷贝其中的全部或部分内容。

版权所有: 辰星(天津)自动化设备有限公司 @2020, All Rights Reserved 联系电话: 022-65181003 服务热线: 022-65181003 地址: 天津市滨海新区南海路 156 号津滨科技工业园 28-D

前 言1
第1章 安全注意事项2
1.1 安全注意事项简介2
1.2 一般性的安全注意事项
1.2.1 机器人系统2
1.2.2 安全风险
1.2.3 安全行为
1.2.4 急停
1.3 机器人安全注意事项7
1.3.1 介绍安全标示
1.3.2 潜在的致命危险9
1.3.3 测试工作有可能的危险9
1.3.4 电气危险9
第2章 机器人本体介绍及安装说明11
2.1 型号说明11
2.2 机器人本体构成12
2.2.1 整体构成12
2.2.2 静平台13
2.2.3 主动臂13
2.2.4 从动臂13
2.2.4 动平台14
2.2.5 中间轴14
2.2.6 副杆
2.3 机器人本体尺寸与工作空间说明15
2.4 机器人坐标系16
2.5 机器人本体安装17
2.5.1 包装箱搬运及开箱检查17
2.5.2 安装方法(以 D3 为例)17
2.6 机器人控制柜安装26
2.6.1 机器人控制柜的取出和摆放26
2.6.2 机器人控制柜的搬运26

	2.7 本体电器部分接线	. 27
	2.7.1 接线说明	. 27
	2.7.2 安装注意事项	. 28
	2.8 机器人安装环境要求	. 28
	2.9 外部电源的连接	. 29
穿	§3章 机器人操作说明	. 30
	3.1 设备上电	. 30
	3.2 启动机械手	. 30
	3.2.1 手动模式下操作机器人	. 30
	3.2.2 自动运行程序	. 32
	3.3 设备断电	. 34
穿	34 章 位置管理	. 35
	4.1 位置界面	. 35
	4.2 零点位置坐标	. 36
	4.3 零点位置校准	. 36
	4.3.1 零点位置校准的必要性	. 36
	4.3.2 零点位置校准的方法	. 37
	4.4 运动空间及软限位	. 37
	4.5 机器人性能参数	. 38
穿	5 章 示教器操作说明书	. 39
	5.1 示教器简介	. 39
	5.1.1 示教器操作按钮说明	. 39
	5.1.2.示教器功能按键详细说明	. 41
	5.1.3.示教器的菜单及状态栏	. 43
	5.2 设备启动操作	. 49
	5.2.1 设备外部自动模式下启动	. 49
	5.2.2 设备手动模式下的操作	. 49
	5.3 RC 程序的导入和导出	. 54
	5.4 项目管理	. 56
	5.4.1 项目管理界面	. 56
	5.4.2 程序执行管理	. 57

 5.5 程序管理	
5.5.1 程序管理界面	
第6章 指令系统介绍	59
6.1 运动指令组	59
6.1.1PTP	
6.2 设置指令组	65
6.2.1LIN	65
6.2.2CIRC	66
6.2.3PTPRel	
6.2.4LINRel	67
6.2.5StopRobot	67
6.2.6WaitOnPath	68
6.2.7WaitIsFinished	68
6.2.8WaitJustInTime	
6.3 运动指令组—归原点指令	68
6.3.1RefRobotAxis	68
6.3.2RefRobotAxisAsync	
6.3.3WaitRefFinished	69
6.4 设置指令组	69
6.4.1Dyn	69
6.4.2DynOvr	
6.4.30vl	70
6.4.4Ramp	71
6.4.5RefSys	71
6.4.6Tool	71
6.14.70riMode	72
6.5 系统功能组	72
6.5.1:=(赋值)	72
6.5.2//(注解)	73
6.5.3WaitTime	73
6.5.4Stop	73

	6.5.5Info	73
	6.5.6Warning	73
	6.5.7Error	74
6.	6系统功能指令组—时钟指令	74
	6.6.1CLOCK.Stop	74
	6.6.2CLOCK.Read	74
	6.6.3 CLOCK.Reset	74
	6.6.4CLOCK.Start	74
	6.6.5CLOCK.ToString	74
	6.6.6TIMER.Start	74
	6.6.7TIMER.Stop	75
	6.6.8SysTime	75
	6.6.9SysTimeToString	75
6.	7系统功能指令组—数学运算指令	75
	6.7.1SIN、COS、TAN、COT	75
	6.7.2ASIN、ACOS、ATAN、ACOT	75
	6.7.3ATAN2	75
	6.7.4LN	75
	6.7.5EXP	76
	6.7.6ABS	76
	6.7.7SQRT	76
6.8	8系统功能指令组—位运算及转换指令	76
	6.8.1SHR	76
	6.8.2SHL	76
	6.8.3ROR	76
	6.8.4ROL	76
	6.8.5SetBit	76
	6.8.6SetBit	77
	6.8.7ResetBit	77
	6.8.8CheckBit	77
	6.8.9STR	77

 6.9 流程控制指令组	
6.9.1CALL	77
6.9.2WAIT	77
6.9.3IFTHENEND_IF,ELSIFTHEN,ELSE	77
6.9.4WHILEDOEND_WHILE	
6.9.5LOOPDOEND_LOOP	79
6.9.6RUN, KILL	79
6.9.7GOTO,IFGOTO,LABEL	
6.10 输入输出指令组-数字量输入输出指令	80
6.10.1DIN.Wait	80
6.10.2DOUT.Pulse	
6.10.3DOUT.Set	80
6.10.4DINW.Wait	
6.10.5DINW.WaitBit	80
6.10.6DOUTW.Set	
6.10.7BOOLSIGOUT.Set	
6.10.8BOOLSIGOUT.Pulse	
6.11 输入输出指令组一模拟量输入输出指令	82
6.11.1AIN.WaitLess, AIN.WaitGreater	82
6.11.2AIN.WaitInside, AIN.WaitOutside	82
6.11.3AOUT.Set	82
6.12 功能块指令组一触发器指令	82
6.12.1OnDistance	82
6.12.20nParameter	
6.12.3OnPlane	83
6.12.4OnPosition	
第7章 维护	
7.1 日常维护	
7.2 控制柜的维护	84
7.2.1 检查控制柜门	
7.2.2 检查密封构件部分有无缝隙和损坏	

	7.3 风扇的维护	
	7.4 风扇防尘网罩及门上防尘棉的维护	85
	7.5 急停按钮的维护	85
	7.6 供电电源电压的确认	85
	7.7 缺相检查	
ß	附录一:伺服驱动器操作手册(精简版)	87
ß	附录二: 阿童木机器人五点示教和三点示教	
	1 五点示教的步骤	
	1.1 示教器变量定义	
	1.2 视觉追踪向导设置	
2	2 三点示教的步骤	103
	2.1 传感器追踪向导设置	103
3	3 检验与修调	113

前 言

首先感谢您使用阿童木机器人:

本手册主要内容包含了七个部分:安全注意事项、机器人安装说明、机器人操作说明、位 置管理、示教器操作说明、指令系统介绍、维 护。

关于本手册:

本手册的读者及为使用该机型的机器人的厂家,包括安装、调试、维修该机器人的人员。 任何安装、调试、使用、维修该机器人的人员必须得到本公司的培训及认真阅读过本手册才能 进行有关机器人的活动。

第1章 安全注意事项

1.1 安全注意事项简介

本章的安全注意事项分为两部分:

第一部分为一般的安全注意事项,该安全注意事项普遍适用于各种型号的机器人,具体介绍见 1.2 一般性的安全注意事项;

第二部分为机器人的安全注意事项,主要介绍了关于机器人操作、用法的安全注意事项, 具体介绍见 1.3 机器人安全注意事项。

1.2 一般性的安全注意事项

1.2.1 机器人系统

本节内容不包括怎样设计、安装机器人,也不包括影响机器人安全的外围设备。为了保护 使用人员,机器人的设计应该符合所在地区和国家的标准和法律。

使用阿童木机器人的公司、个人应该熟读所在地区、国家的标准和法律,并且安装适当的 安全设施保护机器人的使用人员。使用人员应当熟读机器人系统的使用说明。但是操作者即使 完全按照手册中给出的所有安全信息进行,阿童木公司也无法保证操作者不会受到任何伤害。

1.2.2 安全风险

1.2.2.1 概述

本节内容包含了机器人的安装、服务工作中有会出现的危险。

安装、服务机器人时的安全风险:

1. 关于机器人的安全注意事项详见安装和维护章节;

- 2. 系统的急停按钮必须在容易触碰到的位置,以防出现意外时可以紧急停止机器人;
- 3. 操作者必须确定安装的安全措施可用;

4. 操作者必须受过相关培训才能安装操作维修机器人。

5. 阿童木机器人的规范也必须遵守该地区和国家的标准和法律规则。 非电压风险:

1. 安全区域需要在机器人安装前确认,需要在机器人安装前划分出安全区域;

 保护措施或者围栏需要有用来把操作者保护在机器人的工作范围外(在相关区域安放 "闲人止步""闲人免入""高压危险"等标识);

3. 机器人上方不能有悬挂物,以防掉落砸坏机器人等设备;

4. 当拆分机器人时,注意机器人上可能掉落的物体砸伤人员;

5. 小心被电控柜内高温的元器件烫伤;

6. 在维修机器人时,禁止把机器人作为梯子,不要爬上机器人,以防摔落;

7. 减速器中的高温度和高温度油液的飞溅都有可能造成人体的伤害;

8. 严禁扳动机器人各轴;

9. 严禁倚靠电控柜,或者随意触动按钮,以防机器人产生未预料的动作,引起人身伤害 或者设备损坏

集成商安全注意事项:

1. 集成供应商必须确认所有的安全电路和外部应用的安全电路互锁;

2. 集成供应商必须确认紧急急停安全电路和外部应用安全电路互锁。

集成机器人

安全风险	具体描述
	伺服电机和减速机在长时间运转后会产生高温,触
高温部件	摸这些部件容易被烫伤,在高温环境中机器人温升
	更快,烫伤更容易发生。
我险甘此却从家目选出扣照人	采取某些必要措施保证在移除某些零部件时机器人
移际米空 部 什谷勿垣风机奋八 的	不至于倒塌(比如拆除1、2、3轴电机时,需要对
[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	主动臂、从动臂固定,以防机器人倒落)

电缆

安全风险	具体描述
中继收益股起 应且神得好	电缆容易受到机械破坏,所以在运输、储存、使用
电缆比权腿羽,谷勿恢狈外	时要特别小心电缆损坏,特别是接头部分。

电机 减速机

安全风险	具体描述
减速机容易在不当的外力作用	不管在拆分电机减速机,还是在安装电机减速机时。
下损坏	减速机都容易在过大的不当外力下损坏。

1.2.2.2 注意机器人中容易发热的部件

在正常的工作中机器人的很多部分会发热,特别是伺服电机,减速机部分,有时候靠近这 两个部件的部分也会变热,触碰这些地方容易造成烫伤。由于环境温度的变高,更多的机器人

表面会变得很热容易造成烫伤。

避免措施:

1. 用手触摸这些部分前先用手靠近这些部分感受这些部件的温度,以防烫伤。

2. 在停机后等待足够时间让高温部分冷却下来再进行维修等工作。

1.2.2.3 关于拆部件的安全注意事项

安全操作:在确认齿轮等内部零件不再旋转、运动后打开盖子或者保护装置,在齿轮、轴 承等旋转时不能打开保护装置。

安全设计:如果有必要,使用辅助装置使内部不再固定的零件不要脱离它的原来的位置。

1.2.2.4 关于气动/液压的安全注意事项

概述: 该段是关于机器人配套的气动/液压系统的安全

残留能量: 在关闭气源或者液压泵后,气压/液压系统中存在残留的气体/液体,这些气体 /液体有一定的能量,要采取一定的措施防止残留的能量对人体和设备造成伤害,在维修气压 和液压元件前,需要把系统中残留的能量释放掉。

安全设计:防止元器件掉落,液压油流出;

为防意外需要安装安全阀;

需要防止维修工具掉落。

1.2.2.5 操作时的风险

概述:工业机器人是一个柔性的系统,可以应用于很多工业领域,所有的工作必须由专业 的人员操作,并遵守一定的安全准则。操作时必须时刻小心。

高素质的操作者:工业机器人必须由熟悉整个系统、了解各个子系统所存在的风险的专业 人员操作。

异常的风险:如果在正常的工作程序下出现异常,这时要特别的小心。

1.2.2.6 电气风险

虽然在很多时候在故障诊断时需要开启电源,但是在真正维修机器人时务必要关闭电源, 切断其他电源连接。

机器人的主电源需要安装在机器人的工作范围以外,这样即使机器人失控,操作人员也可

以在机器人工作范围以外关闭机器人。

操作者需要注意的高电压危险:

1. 伺服电机的动力线;

2. 连接夹具和其他装置的动力线电气危险 夹具、外接设备等。在机器人关闭后,机器人 外接设备有可能还在运行,所以外接设备的电源线也会人身伤害,或者动力电缆损坏。

1.2.3 安全行为

1.2.3.1 安全措施

在机器人工作范围周围需要安装栅栏及警示牌保证机器人安全工作,防止闲杂人等进入以 及防止机器人伤人。

安全措施:设置安全防护措施需要考虑机器人所拿工件甩落会对人员造成伤害。

1.2.3.2.火灾危险

注意: 在现场需要放置一个二氧化碳灭火器, 以防机器人系统失火。

1.2.3.3 紧急的拆卸机器人手臂

描述:在紧急的情况下,机器人的任何一个臂夹到操作人员了,需要拆除。(拆除步骤详 见第五章维修)小型机器人手臂可以手动移除,但是大的机器人需要用到吊车或者其他小的设 备。

二次伤害: 在释放关节抱闸之前, 机械臂需要先固定, 确保机械臂不会在重力作用下对受困者造成二次伤害。

1.2.3.4 抱闸检测

为什么要检测:正常运行中,抱闸通常会磨损,这时需要对抱闸进行检测。 检查抱闸步骤:

- 1. 让机器人各个关节动到关节承受最大负载的位置;
- 2. 关闭机器人, 使抱闸打开;

3. 对各关节做标记;

4. 过段时间看机器人各关节是否活动。

1.2.3.5 安全使用示教器

注意: 使能时一个在示教器上的 PWR 钮,当按下时,伺服电机上使能;当断开时,伺服电机断开使能。

为了确保安全使用示教器,需要遵守下面规则:

1. 使能按钮在任何时候都不能失灵;

2. 在编程或者测试时,使能需要及时断开;

3. 示教者在进入机器人工作区域时,需要带着示教器,这样可以让其他人不能在编程者 不知情下动机器人。

在暂时停止机器人或者编程、测试时都要及时关闭使能。

1.2.3.6 在机器人工作范围内工作

危险:如果工作必须要在机器人工作范围内进行,需要遵循以下规则

- 1. 模式选为手动模式后才能上使能,断开计算机控制等其他自动控制;
- 2. 当机器人处于手动模式时,速度必须限制在 250mm/s 一下;
- 3. 机器人需要调到手动全速度时,只有对风险充分了解的专业人士才能操作;
- 4. 注意机器人的转动关节,防止头发、衣服被卷入关节;
- 5. 同时要注意机器人运动可能造成的其他危险,或者其他的附属设备;
- 6. 测试电机抱闸是否正常工作,以防机器人异常造成人身伤害;
- 7. 考虑机器人突然向自己所处方位运动时的应变方案;确保设置躲避场所,以防万一。

危险: 在任何情况下, 都不要站在任何机器人臂下方, 以防机器人异常运动 或者其他人动了使能。

1.2.4 急停

急停的定义:

急停是独立于所有机器人电气控制以外的,可以停止所有机器人运动;

急停意味着连接到机器人上的所有电源断开,但是伺服电机上抱闸的电源没有断开,你必须释放急停按钮并且重新开启机器人,这样机器人才能重新运作。

机器人系统的急停需要区分开来:

1. 一个失控急停,通过切断所有伺服电机的电源来停止机器人。

2. 一个可控急停,通过给伺服电机指令来停止机器人,那样机器人能走完路径,当完成路径后,伺服电机停止供电。

注意:急停不能用于平常的程序停止,关闭机器人等。

急停按钮

在机器人系统里有几个急停按钮可以来紧急停止机器人,在示教器和电控柜上都有一个 红色的按钮(如下图所示)。当然用户也可以根据需要自己设置急停按钮。

1.3 机器人安全注意事项

使用前(安装、运转、保养、检修),请务必熟读并全部掌握本说明书和其他附属资料,在熟 知全部设备知识、安全知识及注意事项后再开始使用。本说明书中的安全注意事项分为"危险"、 "注意"、"强制"、"禁止"四类分别记载。

1.3.1 介绍安全标示

	强制
必须强制遵守的	事项。

1.3.2 潜在的致命危险

概述:任何工作的机器人都是一个潜在的致命机器,当运转时,机器人可能有不可预料的 动作,所有的运动都有很强的力可能对工作范围内的人造成严重的伤害或者对设备造成破坏。

避免办法: 在准备机器人工作前,测试一下各安全措施(抱闸)的可靠性。

安全措施包括 安全门、抱闸、安全指示灯。

避免措施:在开启机器人前,确保机器人工作范围内没有其他闲杂人等。

1.3.3 测试工作有可能的危险

概述:因为要维修服务工作,需要拆卸机器人,在完成维修工作后的第一次测试工作需要 考虑几个风险。

措施: 在维修、安装、保养等服务后的第一次测试需要遵循下面的步骤:

- 1. 清理机器人上和机器人工作范围内的所有维修、安装工具;
- 2. 安装好所有的安全措施;
- 3. 确保所有人站在机器人的安全范围之外;
- 4. 测试时要特别要注意维修的部件的工作情况。

注意:当让机器人走程序时,要特别注意潜在的干涉危险。

1.3.4 电气危险

概述:电控柜是控制机器人的中枢,任何对电控柜的误操作都有可能产生电击和机器人的 误动作,进而对人身和设备造成伤害。

危险**:**

1. 绝不要倚靠在电控柜或其他控制柜上;

2. 不要随意地按动操作键。否则可能会造成机器人产生未预料的动作,从而引起人身伤 害和设备损坏;

3. 在操作期间,绝不允许非工作人员触动电控柜。否则可能会造成机器人产生未预料的动作,从而引起人身伤害和设备损坏;

4. 在进行电控柜与机器人、外围设备间的配线及配管时须采取防护措施,如将管、线或 电缆从坑内穿过或加保护盖予以遮盖,以免被人踩坏或被叉车辗压而坏。操作者和其他人员可 能会被明线、电缆或管路绊住而将其损坏,从而会造成机器人的非正常动作,以致引起人身伤 害或设备损坏;

5. 当往机器人上安装一个工具时,务必先切断控制柜及所装工具上的电源并锁住其电源 开关,而且要挂一个警示牌。安装过程中如接通电源,可能会因此造成电击,或会产生机器人 的非正常运动,从而引起伤害;

6. 在操作机器人前,应先按电控柜前门及示教编程器右上方的急停键,以检查"伺服准备"的指示灯是否熄灭,并确认其电源确已关闭。

第2章 机器人本体介绍及安装说明

2.1 型号说明

以 D3P-1100-P0-A2-E1-F0G0 机型为例,其型号含义如图 2.1。截止 2020 年 4 月,现有常规 产品序列如图 2.2,图中未展示机型为常规批量机型,理论上各个参数可以进行组合配置,具 体机型可以根据需求定制。机械本体型号截止至 P 位。

机型具体含义:D2(二轴并联),D3W(三轴并联,无中间轴),D3P(三轴并联,中间轴电机上置),D3PM(三轴并联,中间轴电机下置),S6(stewart 平台)。

其中各个机型的详细参数见《阿童木机器人产品选型手册》

	D3P	1100 -	- P0	A2 E1	FXGX
				i j	Ť.
机型	型号	负载	控制器类型	控制柜类型	视觉
	450	P0:标准	A0: 无控制器	EO:无控制柜	F0G0: 无视觉
	600	P3: 3kg	A1: ATOM CONTRO	L E1: ATOM-01(标准单柜)	FXGX: 有视觉
D3P	1100	P8: 8kg	A2: KEBA CONTROL	E2: ATOM-02(标准双柜)	-
	1200		-	E3: 定制	-
	1300	<u></u>		-	-
	1400	-	-	-	-

图 2.1 D3P 机型型号说明

现有标准型号(详见产品手册)											
种类	型号	种类	型号	种类	型号	种类	型号	种类	型号	种类	型号
D2	D2-1000-P0	D3W	D3W-600-P0	D3P	D3P-450-P0	D3PM	D3PM-600-P0	D5	D5-1100-P3	S6	S6-V0-P3
	D2-1000-P15		D3W-800-P0		D3P-600-P0		D3PM-800-P0				S6-V1-P3
	DD2-1000-P30		D3W-1100-P0		D3P-800-P3		D3PM-1100-P0				
Ű.			D3W-1200-P0		D3P-800-P0		D3PM-1200-P0				
			D3W-1300-P0		D3P-1100-P3		D3PM-1300-P0				
			D3W-1400-P0		D3P-1100-P0		D3PM-1400-P0		57 	l.	
			D3W-1100-P15		D3P-1200-P0		D3PM-1100-P15			(
			D3W-1400-P15		D3P-1300-P0		D3PM-1400-P15				
			D3W-1600-P15		D3P-1400-P0		D3PM-1600-P15				
í.			D3W-1200-P25		D3P-1100-P8		D3PM-1200-P25		2	6	a
					D3P-1400-P8		D3PM-1800-P25				
j.							D3PM-2200-P25				

图 2.2 现有常规本体序列

2.2 机器人本体构成

2.2.1 整体构成

如图 2.3,以 D3P-1100-P0 本体为例,D3 系列本体包含静平台、动平台、主动臂、从动臂、中间轴。D2 系列组成如图 2.4,S6 系列如图 2.5。由于 S6 属于特殊环境应用的并联机器人,后面对结构进行详细说明时以 D3 与 D2 为例,S6 机型在最后进行补充说明。

图 2.3 D3P-1100-P0 本体构成

图 2.4 D2-1000-P0 本体构成图

图 2.5 S6-V0-P0-A1-V1.0 本体构成

2.2.2 静平台

静平台主体由高硬度铝合金制成,外壳为非金属材料拼接而成,内部安装伺服电机与减速机,主动臂安装于减速机输出端面,顶部通过螺栓与机架安装法兰连接。不同型号的顶部连接 尺寸不尽相同,具体尺寸请见<u>《阿童木机器人产品选型手册》</u>

图 2.6 D3P-1100-P0 静平台

图 2.7 D2-1000-P0 静平台

2.2.3 主动臂

主动臂接头由高强度铝合金数控加工而成,与碳纤维管通过特殊工艺装配,球关节与从动 臂球碗配合,后端接头通过螺栓+定位销与主动臂减速机连接。

2.2.4 从动臂

从动臂接头由高强度铝合金数控加工而成,与碳纤维管通过特殊工艺装配,D3系列机器 人从动臂通过限位器内弹簧将球关节拉紧与主动臂对应位置紧密配合,D2系列机器人则通过 定位锁紧螺栓将鱼眼轴承与主动臂前接头进行锁紧配合。D3系列保持架为非必需品,只在负 载、速度超出机型最大负载时选择性使用。D2系列保持架为必需品。

2.2.4 动平台

D3、D2系列动平台由高硬度铝合金加工而成,关节为不锈钢材料。不同型号动平台中间结构不同。D3P动平台上部与中间轴通过圆柱销连接,D3W无中间轴,D3PM动平台固定电机减速机。

末端连接部的详细尺寸请见《阿童木机器人产品选型手册》

2.2.5 中间轴

中间轴为 D3P 特有结构,用于传递顶部中间电机的转动从而增加末端转动自由度。十字 万向节轴承采用 upu 结构,传递角度误差在 0.05°以内,滑杆副采用德国无油润滑技术。5年 无需进行额外保养。

图 2.14 D2-1000-P0 中间轴

2.2.6 副杆

副杆结构为 D2 特有结构,目的在于通过平行四边形原理保持末端姿态。其构成与从动臂 类似,关节处同样采用鱼眼轴承。通过定位螺栓与肘架、静平台、动平台连接。

图 2.15 D2-1000-P0 副杆

2.3 机器人本体尺寸与工作空间说明

在我司《产品选型手册中》中,每一款机型有单独的整体尺寸,以 D3P-1100-P0 尺寸举例, 如图 2.16。

图 2.16 D3P-1100-P0 本体尺寸

图中,960mm为机器人顶部安装面到工作空间上表面的距离,下部灰色安装空间为现有 末端下表面中心点所能到达的理论区域。实际使用时应优先使用上部圆柱区域,且尽量避免使 用接近理论边界的极限位置。

需要注意的是,当安装末端执行器后,工作空间位置需根据末端平面下降的距离进行同步 下移。

2.4 机器人坐标系

D3 系列机器人世界坐标系如图 2.17 所示,其中机器人 X 轴与 1 轴平行。在机器人外壳处 会标明一轴位置。

图 2.17 D3P-1100-P0 坐标轴定义

D2 系列机器人由于其平面搬运,相较 D3 减去 Y 轴即可。S6 机器人坐标轴原点为静平台 几何中心, XYZ 三轴基于实际情况定义即可。

2.5 机器人本体安装

2.5.1 包装箱搬运及开箱检查

以 D3P-1100-P0 机器人为例,机器人及控制柜包装一般为木箱,采用木钉固定,尺寸如图 2.18。(单位: mm,实际尺寸根据机型及项目情况而定)

图 2.18 D3P-1100-P0 本体及控制柜木箱

2.5.2 安装方法(以 D3 为例)

2.5.2.1 开箱

本体木箱上盖由木工钉固定,开启后箱内物料摆放如下图。开箱后请检查箱内物品,确保 部件干燥、完整,未出现本体移位、散落、外壳裂痕等情况。

图 2.19 D3P-1100-P0/P3 本体木箱物品布局

取出静平台,取出取出方法如下图下图所示:

图 2.20 D3P-1100-P0/P3 静平台取出

依次取出从动臂、中间轴(PM 系列为动平台、W 系列为动平台)、电控柜,并确认数量。

图 2.21 D3P-1100-P0/P3 中间轴及从动臂

2.5.2.2 确认机架

参考机架主要分为两种类型,以 D3P-1100-P0 和 D3P-1100-P3 机型为例,机架整体主要采用截面尺寸 100X100X5mm、60X60X3mm 的方钢管,15mm 厚钢板及 20mm 厚钢板,通过焊接工艺制成,不同机型安装形式可能有所不同,安装前请确认机架与机器人顶部连接法兰是否一致。

图 2.22 D3P-1100-P0 机架安装法兰示意

图 2.23 D3P-1100-P3 机架安装法兰示意

用户需根据不同的连接方式选择适合的机架,如不确定可与技术人员联系,确定后再进行 选择。

2.5.2.3 机架说明

机器人在工作过程中,由于自身构件、负载惯性、以及运动过程中的加减速,都会有一定 反作用力传递到机器人的安装机架上,致使机架产生一定频率范围内的振动,这种振动会给机 器人的定位精度和控制性能带来不利影响。

为延长机架的使用寿命,焊接机架的构件应该尽量使用不锈钢或者用普通碳钢焊接后再进 行表面防锈喷涂处理。焊缝位置应打磨光滑,凸出的尖锐构件应尽量加工圆角,以保证操作人 员的安全。本例机架是采用 5mm 厚的 100X100 钢管型材,用户可以根据使用情况自行制造机 架。

对于阿童木机器人,较小的机架会干涉一部分工作空间;如果对机架的尺寸有限制,或用 户需要在小范围工作空间有更高的工作频率,可使用较小的机架;另一方面,如果使用较重的 负载或者较大的工作空间,则需要配套较大的机架,以保证更好的刚性。

2.5.2.4 静平台及机架的安装

首先,将静平台与型材支架分离,如下图所示,取下三处固定螺栓。

图 2.24 D3P-1100-P0 静平台分离示意

图 2.25 D3P-1100-P3 静平台分离示意

根据现场设备情况,本体的目前安装有两种方式,一种用吊车从机架外部起吊静平台,起 吊到适当位置,移动至机架内部,继续起吊到机架的法兰盘处,对应好安装孔,用内六角圆柱 头螺栓进行固定;

图 2.26 D3P-1100-P3 静平台吊装示意

另一种用叉车将机器人静平台部分向上托起,插之前需要一支撑圆柱支撑本体底部聚氨酯 与叉,叉车两个叉子注意调整好适当间距,注意不要磕碰静平台上的电机减速机等部件。托起 后注意整个部分的稳定性,在确保平稳的情况下,用叉车将机器人托起到机架的法兰盘处,对 好相应的安装孔位,用内六角圆柱头螺栓进行固定。后摘除聚氨酯垫片。

图 2.28 D3P-1100-P3 静平台拖装示意

安装采用 M16 内六角圆柱头螺栓,在使用过程中,为防止长时间使用后螺栓松动,每个 螺栓需安装弹性垫圈和平垫圈。

图 2.29 螺栓安装示意(左 D3P-1100-P0、右 D3P-1100-P3)

2.5.2.5 从动臂装配体与主动臂、动平台的安装

单个从动臂装配体由两根从动臂以及两端的拉杆组成,拉杆内配有拉簧。

第一步:将从动臂沿拉簧方向撑开,将从动臂装配体一端的球碗套在主动臂端的球铰上; 第二步:依照第一步方法将从动臂另一端球碗套住动平台球铰,完成从动臂与动平台的安装。

图 2.30 从动臂装配体安装示意

2.5.2.6 中间轴与静平台之间的安装

中间轴组件存在两种安装形式,安装前请先确认动力连接除有无突出法兰。后按照下图所示安 装方式及方向进行安装。连接螺栓一般随货发出,无需单独准备。

图 2.31 D3P-1100-P0 中间轴与静平台之间的安装

图 2.32 D3P-1100-P3 中间轴与静平台之间的安装

2.6 机器人控制柜安装

2.6.1 机器人控制柜的取出和摆放

图 2.33 控制柜取出

2.6.2 机器人控制柜的搬运

图 2.34 控制柜移动

警告
1、只有搬运路线非常平坦时,才能使用小脚轮移动控制器。否则,如果碰到倾斜或不平的地面,可能会发生控制的倾覆,并会引起严重损坏。
2、控制器倾斜到如下角度时,将会倾覆。
前后:约大于等于 20
左右:约大于等于 15
控制倾斜到如下角度时,将会倾覆。
前后:约大于等于 15
左右:约大于等于 15

2.7 本体电器部分接线

控制柜与本体接线如下图所示,说明如下表

图 2.35 控制柜接线

2.7.1 接线说明

1、电控柜通过中继线与本体上方航插环连接,详见下表。(编码器线部分)

电控柜	中继线		航	插环		末端线	电机端
HD-040-MC	D-040-FC	DB25 公	DB25 母	DB9 母头	DB9 公头	9P白色插头*4或L型插	9P白色插座*4或L型插
		头	头	*4	*4	头	座
A1	A1	B1	B1	C1	C1	D1	D1
说明:相同字母对接。							

2、电控柜通过中继线与本体上方新航插环连接,详见下表。(动力线部分)

电控柜	中继线			航插环	电机端	
HD-032-MC HD-032-		WS55-40 公头	WS55-40 母头 6P 白色插头或 L 型插头		6P 白色插头或 L 型插头	
E1	E1	F1	F1	G1	G1	
说明:相同字母对接。						

3、KEBA 示教器线

将示教器端金属插头与电气柜端拧紧。

4、 作为预留。

5、主进电航插,详见下表

引脚	功能	说明	380V 电源接口
5	U	火线	W PF N
4	V	火线	
2	W	火线	
3	Ν	零线	
1	PE	地线	V AC380V插头 U

2.7.2 安装注意事项

对机器人进行安装、示教、编程操作时应遵循如下安全规则:

- 1、所有航插、矩形连接器应该保证接头牢固、接触紧密、稳定性好。
- 2、操作机器人之前,请熟知急停开关位置,并确保在紧急情况下能够迅速按下急停开关。
- 3、机器人接通电源和上伺服前,必须先将机器人内部所有线缆接通,才能给机器人通电。
- 4、机器人正常运行过程中,请勿随意拔插电源线缆及通信线缆。

2.8 机器人安装环境要求

请把控制器安装在满足以下条件的地方:

1. 环境温度必须在 0℃-45℃之间。

- 2. 相对湿度必须在 20%-90%RH 之间。(无凝露)
- 3. 允许安装海拔高度: 0m-3000m。

4. 灰尘、油、烟雾、水等的环境条件: 污染等级 3 级以下, IP53/54(没有使控制器丧失功能的粉尘侵入到控制器内,并且对水的飞沫有保护。

5. 无电气干扰。(控制器外部电源电气噪声:小于 1kV/1s)

2.9 外部电源的连接

在连接外部电源时,请务必严格遵照如下注意事项:

1. 电源开关打开着连接外部电源是极端危险的,将会导致触电等事故发生。开始连接外部电源前,请确认外部电源是断开的。

2. 请确认外部电源是否满足铭牌中的规格要求。

- 3. 为防止电气干扰和触电,请将控制柜接地。
- 4. 请使用专用接地线(100Ω以下),其尺寸大于等于规定的电缆尺寸(3.5-8.0mm2)。
- 5. 为控制柜安装一个专用外部电源断路器,不要和焊接设备共用断路器。

6. 为防止外部电源端发生短路或意外漏电,请安装接地漏电断路器。

第3章 机器人操作说明

3.1 设备上电

图 3.1a 急停按钮

1.外部 380V 动力电接入。

2.急停旋钮松开, 主令开关顺时针旋转至 ON。

3.按下控制柜前面板上的"电源"按钮,电源按钮指示灯(绿色)常亮,此时机器人控制 系统上电完成,控制器 KEBA 进入启动状态,电机驱动器进入启动状态。

上电约1分钟后,系统启动完成。上电过程中,如果设备有异常,比如设备电源没有正常 供应,请及时断电,并联系厂家维护。

3.2 启动机械手

机器人有外部自动,自动,手动三种操作模式,由示教器顶部钥匙旋转切换——顺时针旋 转为外部自动模式,中间挡位为自动模式,逆时针旋转为手动模式。

3.2.1 手动模式下操作机器人

一般情况下不需要进行以下操作,如果必须,请在工程师指导下进行。

图 3.1b 主令开关 图 3.1 控制柜按钮

图 3.1c 上电按钮

an Shuyed World	Defa	ultTool 50%	(EBA	
Shuyedal activated		A 10	17:04:54	×
R.P	Administrato	pr		۲
h.1%	16	12.4	4	z
41	42		~	A4

图 3.2 登录界面

3.2.1.1 手动操作机械手动作

图 3.3 手动挡

将操作模式选择开关拨动到"手动挡"(钥匙逆时针旋转),此时机器人处于手动控制状态。

1. 运动轨迹选择

手动模式下,机械手可以完成如下运动操作:

- 1) 沿机械手自身坐标系 x/y/z 直线动作;
- 2) 机械手 A1/A2/A3 单轴动作。

以上两种运动方式的切换功能通过如下操作实现:

点击示教器触摸屏右边沿靠下位置的"step/jog"面板,选择"jog"。点击示教器右侧物

理按键,即可在触摸屏右侧显示可实现的不同的操作坐标系。此时,点击各个坐标轴右侧相对 应的 "+" 或 "-" 即可实现机械手的动作。

2. 电机上使能

因为机械手选择的电机均带抱闸,所以电机动作前必须"使能"。示教器含带"三段式开 关"控制手动模式下电机使能,按钮不按,电机不使能;按钮按到中间位置,电机使能;按钮 按到最低端,电机掉使能。

图 3.4.a 电机掉使能状态显示

图 3.4.b 电机上使能状态显示

上使能或者掉使能时,机械手会有"咔"的一声声响。 机械手处于使能状态,即可手动操作机械手按照希望执行的轨迹运动。 如果松开使能,机械手立即停止动作。

3. 速度调节

示教器背部有 "V+"和 "V-"两个按钮,可以调节机械手运动速度。机械手实际速度在状态栏显示。

图 3.4 电机使能状态显示

3.2.2 自动运行程序

将操作模式选择开关拨动到"自动挡"(中间位置),此时机器人可自动运行所选择的程序。

3.2.2.1 程序选择

按下示教器左上角的菜单键,点击菜单中的 ,选择"项目",点击"全局"前面的 "+",选择程序,点击"加载",此时所选择的程序可以被运行。

如果程序运行过程中被中止,而且希望从头重新运行程序,请在"全局"操作界面下,把 显示"加载"或者"中断"的程序均终止。选择需要操作的程序,点击"中止"即可。然后在 选择需要运行的程序加载。

如果程序运行过程中被终止,且希望继续运行,则不需要上述操作。

3.2.2.2 程序启动

在所选择的程序被加载后,按下右侧的按钮,可以听到电机松开抱闸、上使能的声音。

再按下⁵¹⁴⁴¹按钮,程序开始运行,机械手开始动作。

3.2.2.3 程序关闭

按下 按钮,程序中止运行,如果要关闭程序,为了避免误操作,必须再按 按钮, 电机掉使能,抱闸工作。

此后,在示教器左上角的菜单键中,选择 ,选择"项目",点击"全局"前面的"+", 选择之前运行的程序,点击"关闭",此时所选择的程序被完全停止运行。

3.2.2.4 速度调节

示教器背部有 "V+"和 "V-"两个按钮,可以实时调节机械手运动速度。机械手实际速度 在状态栏显示。

机械手默认运行速度内部设置,客户如果需要改动,请联系厂家。

初次运行程序,建议将机械手运行速度降至 10%以下。当机械手运行轨迹没有问题,再逐步提速,并最终找到合适的运行速度。

3.3 设备断电

机械手停止运行后,如需关闭设备,请按照以下操作执行:

- 1. 按下"电源"按钮,指示灯熄灭。
- 2. 旋转"主令开关"至 OFF,断开主电电源。
- 3. 拍下急停。

此时,机械手断电完成。

第4章 位置管理

4.1 位置界面

点击位置选项后进入位置界面,,画面底部有 3 个按钮:伺服、关节、世界,点击它们可以更 换坐标系显示界面。如图 4.1:

世界			
名称	数值	单位	机器人
x	920.00	毫米	S Artarm
Y	0.00	毫米	
z	1,190.00	毫米	参照系
A	0.00	度	World 🗸
В	90.00	度	工具
C	180.00	度	S Flange
			速度: 0.00 毫米/秒
			模式: 0
			点动速度: 40.00 %
伺服	关节	世界	点动速度 点动

图 4.1 位置界面

4	н
ť	界
I	. 具
点动速度	点动

图 4.2 位置点动界面

	- /	<i>2</i> /1 =
	100	%
	50 5	%
	25	%
	10 %	%
	1.0 lı	nc
	0.1 lı	nc
点动速度	£	点动

点动按钮可以在实际操作或编程时改变 机器人点动的坐标系,其中有轴坐标系,世界 坐标系,工具坐标系三个坐标系。

点动速度按钮可以调节当前机器人运动 速度。

图 4.3 位置点动速度界面

4.2 零点位置坐标

D3P-1100 并联机器人的零点位置坐标如下表所示:

	坐标	坐标值	单位
	Х	0	mm
	Y	0	mm
笛卡尔坐	Z	-873.668	mm
标系	А	0	0
	В	180	0
	С	0	0
	A1	0	0
加水卡亥	A2	0	0
 田	A3	0	0
	A4	0	0

表 4.1 D3P-1100 并联机器人零点位置姿态

4.3 零点位置校准

4.3.1 零点位置校准的必要性

零点位置校准是将机器人位置与绝对编码器位置进行对照的操作。零点位置校准是在出厂 前进行的,如果没有进行零点位置校准,将不能进行示教和再现操作。

在下列情况下必须再次进行零点位置校准。

- 1. 改变机器人与控制柜的组合时
- 2. 更换电机、绝对编码器时
- 3. 机器人碰撞工件,零点偏移时

4.3.2 零点位置校准的方法

1. 将示教器模式选择开关拨到自动模式(中间挡位),加载程序 sethome,按 PWR 健上 使能,按 START 健运行程序。此时在位置界面显示各轴角度为 0°。

2. 将示教器模式选择开关拨到手动模式(逆时针旋转),分别点动轴1、轴2、轴3,借 助水平仪将各主动臂调成水平状态。

3. 再将示教器模式选择开关拨到自动模式(中间挡位),加载程序 sethome,按 PWR 健上使能,按 START 健运行程序。此时在位置界面显示各轴角度为 0°,完成零点位置的设定。

4.4 运动空间及软限位

D3P-1100-P0型机器人工作空间为1100×380mm。根据D3P-1100-P0机型的工作空间设置了工作区域监控变量area0,其定义如下图。如果机器人规划运动路径超出此区域,在接近工作区域边界处机器人会报警停机。

图 4.4 运动空间

		16 17:	30:12
区信息			
选择区	Garea0	▼ 使能 / 状态	
图示			
		radius-	
		1	A
总览			
形状	CYLINDER	▼ 可关闭区域	
类型	WORKAREA	▼ 自动启动	\mathbf{Z}
参照系	S World	▼ 标志变量启动	
		Ø<无数值>	$\overline{\mathbf{v}}$
		状态变量	
		Ø<无数值>	
坐标表达			
x 🚺	0.000 mm A	0.000 ° 半径 550.000) mm
		0.000 。 高度 370.000	lmm
Y	0.000 mm B		

图 4.5 软限位

4.5 机器人性能参数

工作空间	额定负载	重复定位	最大速度	最大加速
(D×H)	(kg)	精度(mm)	(m/s)	度(m/s²)
mm				
1100×) Eka			120
320	2.5Кg	\pm 0.1mm	/	120

表 4.2 D3P-1100 并联机器人性能参数

第5章 示教器操作说明书

5.1 示教器简介

5.1.1 示教器操作按钮说明

5.1.1.1 示教器正面介绍

在示教器的正面有 17 个按键, 1 个手自动和外部模式切换开关, 1 个急停按钮以及一个状态指示灯。如下图所示:

图 5.1 示教器正面介绍

5.1.1.2 示教器背面介绍

在示教器的背面有 3 个按键, 1 个手动使能三段按键, 1 支触控笔以及一个 USB 接口。 如下图所示:

图 5.2 示教器背面介绍

5.1.1.3 示教器的正确手持姿势

图 5.3 示教器手持姿势

5.1.2.示教器功能按键详细说明

图 5.4 示教器正面按键介绍

1一示教器的主菜单按钮,通过主菜单按键可以进入示教器各操作菜单;

2一示教器的手自动和外部模式切换开关,用于切换机器人的操作模式,机器人操作模式 有外部自动模式(远程模式)、自动模式和手动模式;

3一示教器的急停按钮,该按钮通过示教器接线与控制器的 IO 模块相连,对机器人的急停信号进行控制;

4一示教器的故障指示灯,如果机器人存在故障的时候,该指示灯就会显示红色;

5一示教器的操作屏幕,该屏幕是触摸屏,可以通过示教器背面自带的示教器触控笔等进 行操作,切记勿用尖锐物如螺丝刀等进行猛击,示教器屏幕如果出现裂纹等就会导致示教器触 摸功能丧失;

6一主要是用于手动对机器人进行 Jog 控制的,根据不同的 Jog 方式以及不同的机器人 类型等, Jog 按钮的功能也会稍有不同;

7一"Start"和"Stop"按键是示教器的启动和停止的按钮,用于启动和停止示教器的工艺程序;

8一"☆"号键,该星号键可以根据需要定义为用于切换机器人的 Jog 方式的按键或者切 换程序运行模式或者其他功能;

9-"PWR"使能按钮,用于对机器人使能控制;

图 5.4 示教器背面按键介绍

10一触控笔用于对示教器屏幕进行触控操作;

11一"V+"和"V-"按键用于控制机器人运行时全局速度,轻按一下"V+"按键,全局速度会往上加 1%,长按"V+"全局速度会快速往上加,全局速度最大是 100%,加到 100%之后即使按 "V+"按键,不会继续往上加,同理,轻按一下"V-"按键,全局速度会往下减 1%,长按"V-"按 键,全局速度会快速往下减,当减到 1%的时候会直接再减到 0.1%,减到 0.1%会继续再减小 到 0.01%,最小值就是 0.01%,减到 0.01%之后再按"V-"按键也不会往下减。

12一"2nd"按键,用于切换示教器正面右侧的 6 号 12 个 Jog 按键功能的,比如 7 轴机器人的第七轴 Jog 或者带有附加轴的 6 轴机器人的附加轴的 Jog 就需要通过"2nd"按键帮助切换;

13一示教器的铭牌以及认证信息, 铭牌上包含有示教器的型号, 序列号等相关信息;

14一手动使能三段开关是用于在手动模式下对机器人进行使能控制的,该开关默认状态是 常开的,轻按下去之后,开关闭合,机器人上使能,再用力往下按,开关会再断开,机器人使能断 开;

15—USB 接口,可以连接优盘的存储设备,通过该接口可以对工艺程序和 PLC 状态报告等 文件进行导入导出操作。

5.1.3.示教器的菜单及状态栏

5.1.3.1 示教器的菜单

通过点击示教器主菜单按钮,示教器屏幕上会出现7个子菜单,用户可以根据需求选择不同的子菜单。如下图所示:

图 5.5 示教器主菜单界面

切换到自定义画面,默认是没有 自定义画面的,为了方便客户对设备 进行操作控制,一般都增加了一键启 停界面。

图 5.6 示教器子菜单 1

图 5.7 示教器子菜单 2

进入维护设置界面和输入输出 监测界面,可以在维护设置界面对示 教器的语言,时间等进行设置等,通 过输入输出监测界面可以对 I0 和 驱动等设备进行监测和强制输入输 出控制等。

查看变量,包括位置、输入输 出信号等所有在示教器上进行定义 的变量。另外如果创建了工具坐标 系、参考坐标系、区域监控、码垛和 传送带等变量,在该菜单中就会出现 对应的配置界面,根据需求可以通过 这些配置界面对以上变量进行监测 和设置。

图 5.8 示教器子菜单 3

图 5.9 示教器子菜单 4

项目管理和执行,可以通过子菜 单4的项目菜单切换到项目界面,在 系统中可以包括多个工程,每个工程 中也可以包括多个机器人工艺程序, 要注意同一时间只能加载一个工程。 在执行界面里面可以监测机器人程 序运行的模式以及程序当前运行的 位置和预处理的位置等。

图 5.10 示教器子菜单 5

图 5.11 示教器子菜单 6

快速切换到当前系统加载的机 器人工艺程序,如果当前系统没有加 载机器人工艺程序的话,在示教器 屏幕上会有相应的信息提示没有可 用的程序,一段时间后该信息对话框 会自动消失,如果有工艺程序处于被 加载的状态的时候,通过该菜单可以 快速切换到对应的程序界面。

查看机器人的位置信息,同时也 可以在该菜单下对机器人的工具手 进行对齐设置。在该菜单下能查看到 的位置信息包括机器人每根轴的位 置信息及状态,也可以查看到机器人 在世界坐标系下的位置信息,如果有 参考坐标系的话,也可以查看到机器 人在参考坐标系下的位置信息,同时 还能监控机器人在运行过程中的轨 迹速度等。

图 5.12 示教器子菜单 7

报警栏中可以查看机器人报警, 警告,信息等,同时也可以对某些选 定的报警或者所有的报警进行确认 操作,在该子菜单的报告中可以查看 系统的历史报警信息等,但是该报告 中显示的报警显示由于存储量关系, 很多信息会显示不全,所以建议在机 器人使用过程中,如果发报警的话, 可以通过创建 PLC 状态报告来进行 原因的分析。

5.1.3.2 示教器的状态栏

在示教器主界面顶部,有一个状态栏,它包含了机器人的操作模式、机器人状态及名称、 坐标系、运动调节速度、项目程序名称、程序状态及执行模式、急停开关的状态、使用者等级 等有关机器人系统状态方面的信息。如下图所示:

图 5.13 示教器状态栏

¹一显示当前机器人所处的操作模式,操作模式有三种

分别是手动模式,自动模式和远程模式(外部自动模式)。

2一显示当前机器人的名称和使能状态,根据机器人名称左侧的标志可以判断机器人使能和回参状态,绿色标签表示机器人每个轴已经回参并且上了使能,白色的表示机器人没有回参 但是已经上了使能,红色的表示机器人处于没有上使能状态,本例中显示的是绿色,表示机器 每根轴已经回过参并且机器人处于上使能状态。

3一显示机器人当前的参考坐标系。

4一显示机器人当前使用的工具手。

5一显示机器人全局运行速度百分比, 默认值可以在 PLC 工程中进行配置,范围是 0.1%和 1%~100%。

6一显示 Logo,本例中显示的是 KEBA 公司 Logo,可以 根据需要进行更改。

7一显示当前加载的工艺工程和工艺程序,如果当前没有加载程序的话,此处即不显示任何内容。

8一显示机器人工艺程序当前运行状态,比如暂停状态,或者运行状态等,本例中显示机器人工艺程序处于暂停状态。

9一显示机器人工程程序运行模式,有单步运行、连续运行和间歇式单步运行等,在自动 模式情况下,单步运行的时候,每次按一下"Start"按键,程序会运行一行,连续运行的时候,程序就会自动连续运行,间歇式单步运行模式的时候,运动指令是单独不行的,非运动指 令是连续运行的,本例中显示机器人工艺程序是连续运行模式。

10一显示机器人 Jog 方式,有电 Jog 方式,关节 Jog 方式、世界坐标系下 Jog 方式、工具 手坐标系下 Jog 方式和参考坐标系下进行 Jog 方式。在不同 Jog 方式下,示教器屏幕右侧显示 的内容也不一样,电机 Jog 方式显示的是 "D1…D6",关节 Jog 方式显示的是 "A1…A6", 世界坐标系下 Jog 方式显示的是 "X,Y,Z,A,B,C",工具手坐标系下的 Jog 方式显示的是

"TX, TY, TZ, TA, TB, TC",参考坐标系下的 Jog 方式显示的是"RX, RY, RZ, RA, RB, RC",通过 示教器右侧的"+"和"-"按钮对机器人进行 Jog 点动。

11一显示区域监控状态。

12一显示安全状态,如急停状态,安全门打开状态等。

13一显示示教器操作用户等级,等级从 1-16 级,如果显示的底衬是黄色,表示操作人员 对示教器没有操作权限,在不同的操作等级下,操作人员对设备的操作权限也是不同的如果当 前没有用户登录,该标志底衬会显示红色。

14一显示时间。

15一信息栏,显示最新的报警信息等,点击信息栏,界面会自动切换到报警界面。

16一号是信息确认按钮,操作人员可以通过该按钮对信息进行确认,如果是驱动器出现故障的话,通过该确认按钮是无法直接对驱动器的故障进行复位的,需要通过其他方式对驱动器故障进行复位,比如上使能等。

5.2 设备启动操作

5.2.1 设备外部自动模式下启动

- 1. 等待示教器开机启动完成;
- 2. 转动"手动/自/外部"切换钥匙至"外部控制"模式(钥匙切换到最右边);
- 3. 选择对应的工艺程序,点击"启动按钮",机械手会自动启动;

5.2.2 设备手动模式下的操作

5.2.2.1 设备权限登录

图 5.14 设备权限登录 1

第1步,等待示教器开机

系统设置		第2步,
用户	operator	切换到 Admi
	Administrator	菜单,系统会
Jer 1973	operator	Administrator
权限	service	
	teacher	
语言	中 文 又	
日期	2019-4-30	
时间	7:27:42	
输入禁止	禁用	

图 5.15 设备权限登录 2

		anu -		20%	(EBA	
delta.w	yj.sqm	l		2 3 16	14:50:14	
系统设置		_	_	_		×
خر (۲		Admir	nistrator		~	Y
友服	4	16		注销		z
选择。	具有最高	新权限自	的用户A	dminis	trator	A4
选择 ^{国朝}	中文	2018	2-27]	
ल ल		14:50	: 14			
的入禁止				禁門		I
屏幕优化			20	分钟	~	
2利水						St
5 新秋 2 朝秋					\checkmark	Ste
5 制权 2 制权 2 制权					7 70Q	Ste
12 新秋 2 新秋 8 备: 8 备:1P:				192.168	7700	Ste

图 5.16 设备权限登录 3

5.2.2.2 手动控制机器人

第2步,切换用户操作步骤(从 operator 切换到 Administrator),点击椭圆框中的下拉 菜单,系统会显示可选择的用户,选择 Administrator 登录。

第3步: 在弹出的软键盘中输入用户 Administrator 对应的登录密码,密码 pass,点 击"√"确认,则权限被切换到最高权限。

第1步,钥匙切换到手动模式。

图 5.17 手动控制机器人 1

图 5.18 手动控制机器人 2

图 5.19 手动控制机器人 3

第2步,用正确姿势握住示教器,用手指 扣住背面的手动使能按钮,按在中间档位,并 保持,机器人使能状态显示为绿色。

第3步,将速度降低到10%以下,避免机器人运动过快出现事故,根据所需的 Jog 方式,对机器人进行手动控制。

5.2.2.3 手动设置零点

第1步,将机器人主动臂调水平。

第2步,按下主菜单键,选择子菜单4, 选择"项目",然后显示项目管理界面,该界 面显示当前已经被加载的项目或者程序,点击 "+"可展开子目录下程序名称列表。

第3步,选择"Sethome"程序,点击左 下方"加载";

图 5.21 手动设置零点 2

	0	A		R	bot1		ি World		٩	Defa	ultTo	ool	10	0%	K	E	3 14
	ıhlı	Dou	ldı	leFo	llow.s	SetH	ome		•	35	9			16	下	午3:	45
	<mark>∆</mark> ĕ	N	o r	nato	hing	activ	e user se	ssio	n fo	r devi	ice h	oldi	ng	cor	ntrol		
		Set	Ho	me						CC	DNT	行	ř	2			
		Re	fR	obo	tAxis(A1)											
	3	Re	fR	obo	tAxis(A2)											
	4	Re	fR	obo	tAxis((A3)											
/	5	Re	fR	obo	tAxis((A4)											
	6	Wa	itF	RefF	inishe	ed()											
	7	>>>	>E	OF<	<<												

图 5.22 手动设置零点 3

第4步,将控制模式切换到自动模式;

5.3 RC 程序的导入和导出

第1步,打开程序界面

图 5.26 RC 程序	的导入和导	}出	1	
. 종대 X Robot1 F World	S DefaultTool	100% 16	K IE IB I A 下午4:10	
项目	状态	设置		
+ 应用	被加载			
╋ 机器	被加载			jog
- DoubleFollow				
GoHome				
SetHome				
ShuangSuiDong				
+ SignalFollow				
加载 打开 关闭	信息	刷新	文件	5

图 5.27 RC 程序的导入和导出 2

. 에T1 💆 Robot1 🛛 🕫 World	S DefaultTo	重命名		
-		删除		
项目	状态	粘贴		
▶ 应用	被加载	复制		
▶ 机器	被加载	ar at the	jog	
DoubleFollow		新 建程序		
GoHome		新建功能		
SetHome				
ShuangSuiDong		新建项目		
+ SignalFollow		输入		
		输出		
加载 打开 终止	: 信息	刷新 文件	5	

图 5.28 RC 程序的导入和导出 3

图 5.29 RC 程序的导入和导出 4

第2步,打开程序目录,选择项目,点击 屏幕下方"关闭",将其变为"…"。

第3步,选择要导入导出的程序,选择屏 幕右下角"文件",选择"输入/输出"。

第4步,选择 KeTop,点击"√"确认选择。

设置

5.4 项目管理

5.4.1 项目管理界面

项目 状态

图 5.30 项目管理

点击项目后显示项目管理界面,该界面显示当前已经被加载的项目或者程序,点击"+" 可展开子目录下程序名称列表。

项目打开后,可以通过终止按钮关闭,而程序可以通过加载或打开按钮打开,在加载的情况下,程序可以示教、编程和运行;而在打开的情况下,程序只允许编程。而且在加载的情况下,需按终止按钮才能将程序关闭,而在打开的情况不需要。注意:不同项目的程序不能同时打开,需关闭暂时不用的项目及其下的程序。

信息按钮显示当前选中程序的名称,生成日期和修改日期。按钮刷新可对项目和程序进行 相关的更新。按钮文件可对项目或程序进行新建、删除、重命名、剪切复制等操作。

5.4.2 程序执行管理

图 5.31 程序执行管理

按执行进入后,该界面显示为正在执行过程中的项目和程序,具体内容显示为执行程序的 类型、状态等。按钮显示可以显示选中程序的具体内容,单步/连续设置执行程序的运行为单 步或连续。结束则可关闭当前执行的程序。

5.5 程序管理

5.5.1 程序管理界面

点击 进入后,打开被加载程序的编程或者运行界面。 在加载的情况下,编辑界面背景为白色,而在打开的情况下,背景则为灰色。 界面边框说明如图:

图 5.31 程序界面

程序 界面底部按钮说明:

更改 用来修改已经生成的指令;

新建 用以调用指令库,并生成程序所需指令;

设置 PC 将程序指针指向某个光标,并且下一个开始指令从光标处开始。该指令按钮只有 在程序加载的时候激活。

单步/连续 通过该按钮用户可以使程序在单步模式或连续模式之间切换。

>> 该按钮为翻页按钮;

编辑 按钮打开后包括了键盘、子程序、关闭子程序、格式、查找、注释/取消注释,不激活/激活的按钮;

选择 打开后,包括全部选取、剪切、复制、粘贴等按钮;

删除 将程序中光标选取的行删除;

撤销 用以取消上一步的操作,插入,替代,删除等操作。另外,在 KeTop 右侧操作部分, 有两个按钮在程序中经常使用到:开始键 Start 和停止键 Stop。

第6章 指令系统介绍

6.1 运动指令组

6.1.1PTP

该指令表示机器人 TCP 末端将进行点到点的运动(point to point),执行这条指令时所有的轴会同时插补运动到目标点。在程序中新建指令运动-PTP,点击右下角确定后弹出窗口,同时系统会自动示教当前机器人的点位,具体如下图:

PTP(ap0)		
+ pos: POSITION_	L ap0	V
dyn: DYNAMIC_ (OPT)	no Value	V
ovi: OVERLAP_ (OPT)	no Value	V
Name	Value	
PTP(ap0,d0,or0)		
+ pos: POSITION_	L ap0	V
+ dyn: DYNAMIC_ (OPT)	L d0	V
+ ovi: OVERLAP_ (OPT)	L or0	V

图 6.1 PTP 指令

共有三个参数可配置,分别是 pos 位置参数, dyn 动态参数, ovl 逼近参数(在整个 PTP 指令中,其中 dyn 和 ovl 参数是可选的,可根据实际工艺进行选择)。

6.1.1.1pos 参数

pos 表示 TCP 点的位置,即执行 PTP 这条指令之后,TCP 点会走到 apO 点,apO 为该 点位的名字,可通过左下角变量-键盘进行修改,其内部参数如下图所示(表示轴的位置,6 轴 机器人有 6 个轴的位置,如果只有三个轴的话,只显示到 a3,其他的以此类推。后面的值表 示该轴相对于零点的位置,如果是旋转轴的话,单位是度,如果直线轴的话,单位是毫米):

Name	value	
PTP(ap0,d0,or0)		
- pos: POSITION_	L ap0	V
a1: REAL		0.00
ə2: REAL		0.00
a3: REAL		90.00
a4: REAL		0.00
a5: REAL		90.00
a6: REAL	×	0.00
+ dyn: DYNAMIC_ (OPT)	L d0	V
+ ovi: OVERLAP_ (OPT)	L or0	V

图 6.2 PTP 指令 pos 参数界面

6.1.1.2dyn 参数

dyn 表示执行这条指令过程中机器人的动态参数,默认名称为 d0,可点击名称对话框进行修改,作用范围可以根据需要在下拉框进行选择,该参数包括 12 个参数,具体如下:

范畴 十 动力等	发重叠优化	类别 DYNAMIC
运动参数		
作用范围:	程序	▼ Const
名称:	d0	Deactivate writeback

图 6.3 PTP 指令 dyn 参数界面 1

Name	Value		
dyn: DYNAMIC_ (OPT)	L d0	V	-
velAxis: PERCENT		93	
accAxis: PERCENT		94	
decAxis: PERCENT		94	
jerkAxis: PERCENT		94	
vel: REAL		1,500.00	
acc: REAL		6,000.00	
dec: REAL		6,000.00	
jerk: REAL	1	,000,000.00	
velOri: REAL		90.00	
accOri: REAL		180.00	-
decOri: REAL		180.00	-
ierkOri: RFAI	1	000 000 00	-

图 6.4 PTP 指令 dyn 参数界面 2

其中 velAxis, accAxis, decAxis, jerkAxis 分别表示在自动运行模式下运动时的轴速度, 轴加速度和减速度, 轴的加加速度, 其值是一个相对于最大值的百分比(该最大值为 PLC 程序中驱动轴配置的参数), 值得范围是 0-100.系统的默认值如上所示, 在 PLC 配置中可以设置, 但 是有时候默认值和 PLC 配置值会有略微偏差, 示教器程序指令中如果没有配置动态参数将按照 PLC 配置的动态参数运行, 如果示教器程序指令中加了动态参数将以指令中的参数运行, 具体如下所示:

General		
Acceleration ramp type	Time optimal ramp	•
Orientation-interpolatio	on type Cartesian	*
Default dynamics	s for robot movement in automatic mode	
Default dynamics	s for robot movement in automatic mode.	
Default dynamics PTP dynamics Velocity 94	s for robot movement in automatic mode.	
Default dynamics PTP dynamics Velocity 94 Acceleration 95	s for robot movement in automatic mode.	

lomrc

图 6.5 PTP 指令 dyn 参数界面 3

另外 4 个参数 vel,acc,dec,jerk 分别表示在自动运行模式下运动时直线运动指令的 TCP 点的速度,加速度,减速度和加加速度,示教器程序指令中如果没有配置动态参数将按照 PLC 配置的动态参数运行,如果示教器程序指令中加了动态参数将以指令中的参数运行,在 PLC 配置里面可以设置,具体如下所示:

Settings Dynamic Model			
 •			
•			
Lin dynamics			
Lin dynamics Velocity Cart. pa	th 1500.0 mm/s	Cart. orientation	90.0 % s
Lin dynamics Velocity Cart. pa Acceleration Cart. pa	th 1500.0 mm/s th 6000.0 mm/s ²	Cart. orientation	90.0 % 180.0 %s
Lin dynamics Velocity Cart. pa Acceleration Cart. pa Jerk Cart. pa	th 1500.0 mm/s th 6000.0 mm/s ² th <i>1000000.0 mm/s³</i>	Cart. orientation Cart. orientation	90.0 % 180.0 % 1000000.0 %3

图 6.6 PTP 指令 dyn 参数界面 4

还有 4 个参数 velOri, accOri, decOri, jerkOri 分别表示在自动运行模式下直线运动时 TCP 姿态变化的速度,加速度,减速度和加加速度,示教器程序指令中如果没有配置动态参数将按照 PLC 配置的动态参数运行,如果示教器程序指令中加了动态参数将以指令中的参数运行,在 PLC 配置里面可以设置,如下图所示:

	*			
	*			
	•			
	•			
	Lin dynamics			
	Lin dynamics Velocity Cart. path	1500.0 mm/s 🗘	Cart. orientation	90.0 %s
m	Lin dynamics Velocity Cart. path Acceleration Cart. path	1500.0 mm/s 🗘	Cart. orientation	90.0 %s 180.0 %s²

图 6.7 PTP 指令 dyn 参数界面 5

6.1.1.3ovl 参数

ovl 表示机器人运动逼近参数,有三种类型的逼近参数,如下所示:

Category	Туре
-+ Dynamics and Overlaps	OVLABS
	OVLREL
1	OVLSUPPOS
absolut overlapping dataset	
Name: oa0	Scope: PROGRAM

图 6.8 PTP 指令 ovl 参数 1

其中 OVLABS 表示绝对逼近参数,定义了机器人运动逼近可以允许的最大 偏差,如下所示:

- ovi: OVERLAP_ (OPT)	L o a0 🗸 🗸
posDist: REAL	0.00
oriDist: REAL	360.00
linAxDist: REAL	10,000.00
rotAxDist: REAL	360.00
vConst: BOOL	

图 6.9 PTP 指令 ovl 参数 2

posDist 表示当 TCP 点的位置距离目标位置的最大值,即当 TCP 点距离目标位置 的值等于 posDist 时,机器人轨迹开始动态逼近。

oriDist 表示当 TCP 点的姿态距离目标位置的姿态的最大值,即当 TCP 点的姿态与目标位置的姿态相差的大小等于 oriDist 时,机器人轨迹开始动态逼近。

linAxDist 与 rotAxDist 表示的是针对点到点运动时直线轴和旋转轴的逼近参数,单 位分别为毫米和度。

例子中使用的是绝对逼近参数,走出来的效果如下所示:

图 6.10 PTP 指令 ovl 参数 3

图形靠内部较圆滑的轨迹的绝对逼近参数设置如下:

ovi: OVERLAP_ (OPT)	L oa0 🔽
posDist: REAL	0.0
oriDist: REAL	360.0
linAxDist: REAL	10,000.0
rotAxDist: REAL	360.0
vConst: BOOL	

图 6.11 PTP 指令 ovl 参数 4

靠外部的轨迹的参数设置如下:

ovi: OVERLAP_ (OPT)	L o a0 🔽
posDist: REAL	0.0
oriDist: REAL	0.0
linAxDist: REAL	10,000.0
rotAxDist: REAL	0.0
vConst: BOOL	

图 6.12 PTP 指令 ovl 参数 5

另外 OVLREL 表示相对逼近参数,定义了机器人运动逼近的百分比,如下所示(其值是百分比,值范围是 0-200,当等于 0 的时候,相当于没有使用逼近参数,默认值是 100):

- ovi: OVERLAP_ (OPT)	L or0	$\mathbf{\nabla}$
ovi: PERC200		100

图 6.13PTP 指令 ovl 参数 6

例子中使用的是相对逼近参数,走出来的效果如下所示:

图 6.14PTP 指令 ovl 参数 7

图形靠内部较圆滑的轨迹的相对逼近参数值是 50,外面的轨迹的参数值是 0(如果值越 大,其效果就会越明显,具体数值根据工艺需求而定)。

还有 OVLSUPPOS, 如下所示(其值是百分比, 值范围是 0-200, 默认值为 200):

ovi: OVERLAP_ (OPT)	L os0	$\mathbf{\nabla}$
ovi: PERC200		200

图 6.15PTP 指令 ovl 参数 8

6.2 设置指令组

6.2.1LIN

LIN 指令为一种线性的运动命令,通过该指令可以使机器人 TCP 末端以恒定的速度直线移动到目标位置。假如直线运动的起点与目标点的 TCP 姿态不同,那么 TCP 从起点位置直线运动到目标位置的同时,TCP 姿态会通过姿态连续插补的方式从起点姿态过渡到目标点的姿态。如图所示:

Lin(cp0,d0,or0)		
+ pos: POSITION_	L cp0	V
+ dyn: DYNAMIC_ (OPT)	L d0	V
+ ovi: OVERLAP_ (OPT)	L or0	V

图 6.16LIN 指令界面

6.2.2CIRC

圆弧指令使机器人 TCP 末端从起点,经过辅助点到目标点做圆弧运动。

图 6.17CIRC 指令 1

该指令必须遵循以下规定:

1. 机器人 TCP 末端做整圆运动,必须执行两个圆弧运动指令。

2. 圆弧指令中,起始位置、辅助位置以及目标位置必须能够明显的被区分开。

注意: 起始位置是上一个运动指令的目标位置或者当前机器人 TCP 位置。

图 6.18CIRC 指令 2

6.2.3PTPRel

该指令为 PTP 插补相对偏移指令,该指令的相对偏移可以是位移也可以是角度。该指令总 是以当前机器人位置或者上一步运动指令的目标位置为起点位置,然后机器人相对移动位移偏 移或者角度偏移。运动还可以设置 Dyn 和 Ovl 参数。如图所示:

РТР			
+ dist: DISTANCE_	设置为AXISPos是对物的角度相对偏移,设	L ad0	$\mathbf{\nabla}$
dyn: DYNAMIC_ (OPT)	置为CARTPos是对位移 相对偏移,但都是相	no Value	V
ovi: OVERLAP_ (OPT)	和0v1同前者一样设置	no Value	V

图 6.19 PTPRel

例如生成指令 PTP (ap0)和 PTPRel (ad0),机器人首先执行 PTP (ap0)指令,然后执行 PTPRel (ad0) 指令。当执行 PTPRel 时则相对于 PTP 指令的目标点 ap0 做偏移运动,假如在 PTPRel 中设置了 da1:real 的值为 30,那么 PTPRel 运行时相对于 ap0 点向 A1 的正方向转动了 30 度,其它轴无转动。

6.2.4LINRel

该指令为线性插补相对运动指令,与PTPRe1 类似,其设置如图:

LinRel(cd0) 设置与PTPRe1基本相同

+ dist: DISTANCE_	L cd0	$\mathbf{\nabla}$
dyn: DYNAMIC_ (OPT)	no Value	V
ovi: OVERLAP_ (OPT)	no Value	V

图 6.20 LINRel

6.2.5StopRobot

该指令是用来停止机器人运动并且丢弃已经计算好的插补路径。StopRobot 停止的是机器 人运动,而不是程序,因此机器人执行该指令后将以机器人停止的位置做为运动起点位置,然 后重新计算插补路径以及执行后续的运动指令。在程序中生成指令为:

StopRobot ()

6.2.6WaitOnPath

该指令用于在程序规划好的路径中等待一段时间,并忽略运动和程序的同步关系。

WaitOnPath(1000)	
timeMS: DINT	1,000

图 6.21 WaitOnPath

6.2.7WaitIsFinished

该命令用于同步机器人的运动以及程序执行。因为在程序当中,有的是多线程多任务,有的标志位高,无法控制一些命令运行的先后进程。使用该命令可以控制进程的先后顺序,使一些进程在指定等待参数之前被中断,直到该参数被激活后进程再持续执行。程序中生成指令为:

WaitIsFinished ()

6.2.8WaitJustInTime

该命令类似于同步指令,但是执行该指令时不会影响到机器人的动态参数。在程序中生成 指令为:

WaitJustInTime ()

6.3 运动指令组一归原点指令

6.3.1RefRobotAxis

该指令用于标定回零位置,可以单步运行,执行后机器人根据配置中的回零方式运动,当 机器人到达零点后,保存当前机器人轴位置做为该轴的零位。轴在回零后要走到的一个设定的 目标值,如果该值没有的话,则只回零到零点。

6.3.2RefRobotAxisAsync

该指令允许多轴同时回零。这个指令等待机器人回零动作结束。为了能够知道是

否完成回零,要配合使用WaitRefFinished.

6.3.3WaitRefFinished

该指令等待所有异步回零运动完成或在某回零程序中出现错误。假如回零已经成功完成, 那么就会返回 TRUE, 否则就会返回 FALSE。

6.4 设置指令组

6.4.1Dyn

该指令配置机器人运动的动态参数。在 PTP 运动中配置轴速度的百分比,笛卡尔动态参 数使用绝对值参数,执行该指令后,在自动模式下机器人以设定的动态参数运动知道动态参数 被需改。

+ dyn: DYNAMIC_		L d0	V
2 Dyn(d0)			
3 PTP(ap0)	4	PTP(ap0, d0)	
4 PTP(ap1)	7	PTP(ap1, d0)	
5 PTP(ap2)	8	PTP(ap2, d0)	

上述两个程序走出来的效果是一样的。

6.4.2DynOvr

配置机器人运动的动态重叠参数。执行该指令后可以按照配置的百分比降低机器人动态参 数。

名字	数值	
DynOvr(50)		
ovr: PERCENT		50

图 6.23 DynOvr

6.4.30vl

该指令用于配置机器人运动逼近参数,参数分为相对逼近参数和绝对逼近参数。相对逼近参数(OVLREL)定义了机器人运动逼近的百分比,而绝对逼近参数 (OVLABS)定义了机器人运动逼近可以允许的最大偏差。

相对逼近参数重叠的指定是指对由上一移动命令向下一移动命令过渡时的切换时间所进 行的设置。相对指定能够将上一移动命令从开始减速到运行结束的时间进行重叠。在相对指定 中,规定上一移动命令从开始减速到停止运行的时间为 100%,若无重叠则为 0%。

6.4.4Ramp

设置加速度的加速类型。可设置的类型有:梯形倾斜、正弦波倾斜、正弦波平方倾斜、最小加加速度倾斜,分别如下图所示,另外还有一个时间最优化方式倾斜。

图 6.27 Ramp

在程序中生成指令例如:

Ramp (TRAPEZOID) Ramp (SINE) Ramp (SINESQUARE) Ramp (MINJERK)

6.4.5RefSys

设置参考系统指令。通过该指令可以为后续运行的位置指令设定一个新的参考坐标系。如 果程序中没有设定参考坐标系,系统默认参考坐标系为世界坐标系。

6.4.6Tool

工具坐标指令为机器人设置一个新工具坐标。通过该指令可以修改机器人末端工作点。下 图为某工具坐标系坐标

Tool		
tool: TOOL_	L to	V
x: REAL		-3.52
y: REAL		-1.37
z: REAL	2	58.60
a: REAL		-22.63
b: REAL		91.00
c: REAL		-86.32

图 6.28 Tool

6.14.70riMode

该指令用于设置机器人 TCP 姿态插补,如果程序中没有指定姿态插补方式,系统默认机器 人配置文件中指定的姿态插补方式。系统功能指令组

6.5 系统功能组

6.5.1...:=...(赋值)

给某变量赋值,左侧为变量, ":="为赋值操作,右侧为表达式。表达式的类型必须符合 变量的数据类型。例如:

图 6.29 ...:=...(赋值)

6.5.2//...(注解)

用于说明程序的用途,使用户容易读懂程序。例如:

图 6.30 //...(注解)

6.5.3WaitTime

用于设置机器人等待时间,时间单位为 ms,假如设置等待 1s,生成命令为:

	test	CONT	Line: 2	
⊳	WaitTime(1000)			
з	>>>E0F<<<			

图 6.31 WaitTime

6.5.4Stop

该命令用于停止所有激活程序的执行。如果指令不带参数,等同于按下了 KeTop 终端上的停止按钮。

6.5.5Info

发出一个信息通知。信息显示在信息协议和报告协议的 Message 和 Message-Log 栏中。此 外,有可能显示两个附加参数的任何类型信息,第一个参数使用 "%1"做为占位符,第二个 参数使用 "%2"做为占位符。若在程序中生成指令,生成的指令为: Info ("HELP!")

6.5.6Warning

发出一条警告信息。信息描述参照 Info 命令。设置基本相同,在程序中若生成指令为:

Warning ("It is dangerous!")

6.5.7Error

发出一条错误信息。错误信息会导致程序停止,错误必须被确认后程序才可以继续执行。 信息描述参照 Info 命令。Error 基本与前两者一样,暂不详细介绍。

6.6 系统功能指令组一时钟指令

6.6.1CLOCK.Stop

停止时钟。时钟只有先前已经被启用后才能被停止。

6.6.2CLOCK.Read

读取被测时间。

6.6.3 CLOCK.Reset

重置时钟。时钟会被重置即使时钟当前还在运行。

6.6.4CLOCK.Start

启动时钟。

6.6.5CLOCK.ToString

同 CLOCK.Read 测量时间类似。只是它将时间转变为文本格式 tt:hh:mm:ss.ms。

6.6.6TIMER.Start

启动定时器。

6.6.7TIMER.Stop

停止定时器。定时器只有在先前已经启动了以后才能被停止。

6.6.8SysTime

该指令从控制系统中读取当前系统时间,返回 DINT 类型数值。

6.6.9SysTimeToString

该指令将系统时间转变为文本格式"DDD mon dd hh:mm:ss yyyy"。当调用没有参数的SysTimeToString 时,该指令返回当前格式化的系统时间。

6.7 系统功能指令组一数学运算指令

6.7.1SIN、COS、TAN、COT

正弦、余弦、正切、余切三角函数。

6.7.2ASIN、ACOS、ATAN、ACOT

反正弦、反余弦、反正切、反余切反三角函数。

6.7.3ATAN2

返回由X 轴到(y, x) 点的角度。

6.7.4LN

自然对数函数。

6.7.5EXP

以 e 为底的指数函数。

6.7.6ABS

绝对值函数,返回数字的绝对值。

6.7.7SQRT

开平方根函数。

6.8 系统功能指令组一位运算及转换指令

6.8.1SHR

向右移位运算函数。

6.8.2SHL

向左移位运算函数。

6.8.3ROR

循环向右移位运算函数。

6.8.4ROL

循环向左移位运算函数。

6.8.5SetBit

将某位置1函数。

6.8.6SetBit

将某位置1函数。

6.8.7ResetBit

将某位置0函数。

6.8.8CheckBit

判断某位是否为1函数。

6.8.9STR

返回与指定数值表达式对应的字符串函数。

6.9 流程控制指令组

6.9.1CALL...

调用指令,能够调用其它程序作为子程序,且调用的程序必须在编写程序的项目中。假如 需要调用的程序为 test,在程序中生成命令为:

CALL test()

6.9.2WAIT....

等待指令。当 WAIT 表达式的值为 TRUE,下一步指令就会执行,否则的话,程序等待直 到表达式为 TRUE 为止。

6.9.3IF····THEN····END_IF, ELSIF····THEN, ELSE

IF 指令用于条件跳转控制。类似于 c++中的 IF 语句。IF 条件判断表达式必须是 BOOL 类

型。每一个 IF 指令必须以关键字 END_IF 做为条件控制结束。在删除指令时也需要把 IF...THEN...END_IF 一起删除,如果只是删除其中一条,会提示不允许删除。

```
IF x < 100 THEN

y := 10

ELSIF x < 400 THEN

y := 20

ELSIF x < 900 THEN

y := 30

ELSE

y := 40

END_IF
```

图 6.32 IF…THEN…END_IF, ELSIF…THEN, ELSE

6.9.4WHILE...DO...END_WHILE

WHILE 指令在满足条件的时候循环执行子语句。循环控制表达式必须是 BOOL 类型。该 指令必须以关键字 END_WHILE 做为循环控制结束。例如:

图 6.33 WHILE...DO...END_WHILE

该指令执行两点之间的循环运动。

在删除指令时也需要把 WHILE...DO...END_WHILE 一起删除,如果只是删除其中一条,会 提示不允许删除.当我们使用 WHILE DO 循环时,最好能在程序中加一句 WaitTime 指令,避 免死循环,导致系统死机。

6.9.5LOOP...DO...END_LOOP

循环次数控制指令。如:

LOOP 10 DO PTP(ap0) PTP(ap1) END_LOOP

图 6.34 LOOP...DO...END_LOOP

该指令执行两点之间的循环运动,且循环次数为 10.同样在删除指令时也需要把 LOOP...DO...END_LOOP 一起删除,如果只是删除其中一条,会提示不允许删除.

6.9.6RUN, KILL

RUN 指令调用一个用户程序,该程序与主程序平行运行。RUN 调用的程序必须用 KILL 指 令终止。RUN 调用的程序必须是该项目中的程序。

//in test.tip

RUN Prog189

...

KILL Prog189

RETURN

该指令用于终止正在运行的程序。

6.9.7GOTO..., IF...GOTO..., LABEL...

GOTO 指令用于跳转到程序不同部分。跳转目标通过 LABEL 指令定义。不允许从外部跳转进入内部程序块。内部程序块可能是 WHILE 循环程序块或者 IF 程序块。IF-GOTO 指令相当于一个缩减的 IF 程序块。IF 条件判断表达式必须是 BOOL 类型。假如条件满足,程序执行 GOTO 跳转命令,其跳转目标必须由 LABEL 指令定义。LABEL 指令用于定义 GOTO 跳转目标。

6.10 输入输出指令组一数字量输入输出指令

这些指令运用到输入输出模块的数字信号和模拟信号,数字与模 拟信号经常与触发信息一起配合使用。

6.10.1DIN.Wait

等待直到数字输入端口被设置或重置,或者直到可选的时间终止,例如: din0.Wait (TRUE)

6.10.2DOUT.Pulse

将数字输出端口设置为 TRUE 或者 FALSE 持续一段时间,可选参数设置脉冲是否在程序停止时能够被中断,如果可选参数没有被设置,那么该指令自动默认可选参数为 FALSE。例如:

dout0.Pulse (TRUE, 2000, TRUE)

该程序表示数字输出端口 dout0 将被设置为 TRUE,如果程序没有被中断,那么 2 秒后数 字输出端口 dout0 被设置为 FALSE。如果在 2 秒内程序被中断,那么数字输出端口 dout0 输出 FALSE,程序重新运行后数字输出端口 dout0 重新被设置为 TRUE 直到剩余的时间结束。

6.10.3DOUT.Set

对数字输出端口进行设置,设置输出为 TRUE 或 FLASE,例如: dout0.Set (TRUE)

6.10.4DINW.Wait

这个指令会一直等待直到输入字适合设定值,或者直到可选的时间超时了。例如: dinw0.Wait (16#0021, 16#00FF, i0)

6.10.5DINW.WaitBit

等待直到一个输入字指定位被设置或重置。例如: dinw0.WaitBit (TRUE, 7)

6.10.6DOUTW.Set

设置输出字为指定的值。例如: doutw0.set (16#00FF)

6.10.7BOOLSIGOUT.Set

设置/复位某个数字输出变量,具体描述如下:

BOOLSIGOUT: 选择信号, 该变量为特殊类型, 详细参考 1.2.12 BOOLSIGOUT 创建;

value:选择输出变量的值,TRUE/FALSE;

fbSignal: 设定反馈值,即输出某个变量后,必须收到反馈,指令才能结束;

fbTimeoutMs: 等待反馈值时间设定 T (ms), 当该处不填写数值或者 T 为 0 时,必须 收到反馈,指令才能结束; 当 T 不为 0 时,如果等待时间大于 T,则发生如下报警;

Timeout by waiting on IO: 'Delta.ConvTest.test.b0' (bSigOut0.Set) (Delta.ConvTest.test/2)

图 6.35 7BOOLSIGOUT.Set

6.10.8BOOLSIGOUT.Pulse

设置/复位某个数字输出变量持续一段时间,具体描述如下:

BOOLSIGOUT: 选择信号, 该变量为特殊类型, 详细参考 1.2.12 BOOLSIGOUT 创建;

pulseLengthMs:变量持续时间 T 设置;

pulseValue: 变量输出的状态, 默认是 TRUE;

PauseAtinterrupt: 默认为 FALSE; 当设置成 TRUE 时, pulseValue 被设置为 TRUE, 如果 程序没有被中断, 那么 T ms 后数字输出 BOOLSIGOUT 被设置为 FALSE。如果在 T ms 内程序 被中断, 那么数字输出 BOOLSIGOUT 被设置为 FALSE, 程序重新运行后数字输出 BOOLSIGOUT 重新被设置为 TRUE 直到剩余的时间结束。当设置成 FALSE 时, 不管程序有没有被中断, 那 么 T ms 后数字输出 BOOLSIGOUT 都会被设置为 FALSE。

6.11 输入输出指令组一模拟量输入输出指令

6.11.1AIN.WaitLess, AIN.WaitGreater

该两种指令功能是等待直到模拟量输入值小于或大于指定的值,或者直至可选的时间超时。 例如:

ain0.WaitLess (40.0), ain0.WaitGreater (100.0)

6.11.2AIN.WaitInside, AIN.WaitOutside

这两种指令功能是等待直到模拟量输入值在一个数值区间内或者外,或者直至可选的时间 超时。例如:

ain0.WaitInside (5.0, 15.0), ain0.WaitOutside (0.5, 4.0)

6.11.3AOUT.Set

设置模拟量输出为指定的值。例如: aout0.Set (4.0)

6.12 功能块指令组一触发器指令

6.12.10nDistance

触发器可以在从起点运动一定距离或者距离终点一定距离时触发。时间可选项表示机器人 在运行到触发点前一定时间触发或者经过触发点后一定时间触发。

在程序中的指令为:

LIN (PO)

OnDistance (FROMBEGIN, 20) DO Dout.Set (TRUE) LIN (P1)

6.12.2OnParameter

在下一个运动段的某点触发。时间可选项表示在触发点的时间偏移,如果时间数值为负,

表示机器人在到达触发点前的某一时间触发,如果时间数值为正,表示机器人到达触发点后某一时间触发。如果没有指定时间偏移,那么机器人到达触发点就会触发。时间偏移限制在-300ms~1000ms。

6.12.3OnPlane

在笛卡尔空间里定义机器人在某一触发平面上触发。例如: OnPlane(YZPLANE,100)表示机器人末端在距离 YZ 平面 100 毫米时触发。例如:

RefSys (Rs1)

Lin (Pos1)

OnPlane (YZPLANE, 100.0, -100) DO Dout1.Set (TRUE)

Lin (Pos2)

该程序中参考系统为 Rs1, 机器人从 Pos1 到 Pos2 作直线运动时, 在距离 YZ 平面 100 毫米 处提前 100ms 触发。

6.12.4OnPosition

该指令用于同步触发,当机器人经过指定位置时触发。例如:

Lin (ap1)

LOOP 3 DO

Lin (ap3)

Lin (ap4)

END_LOOP

OnPosition () DO Dout1.Set (TRUE)

Lin (ap2)

该程序中 LOOP 指令执行到第三次 Lin (ap4)时, OnPosition 指令触发, 然后执行 Dout1.Set 等指令。功能块其他指令: 区域监控、跟踪、码垛、堆叠高级、横摆等请参看专门功能块说明 资料。

第7章 维护

7.1 日常维护

	注意		
通电时请不要触摸	冷却风扇等设备,有触电、受伤的危险	硷	
请务必按表 7.1 进	行下列日常检查。		
维护设备	维护项目	维护时间	备注
坊制柘	检查控制柜的门是否关好	每天	
	检查控制柜内插头是否有松动	每天	
急停按钮	动作确认	每天	接通伺服时
安全开关	动作确认	每天	示教模式时
轴流风扇	确认风扇是否转动	1个月	打开电源时
风扇防尘网罩及	清理防尘网罩及防尘棉上的灰尘	1个月	切断总电源时

表 7.1 日常维护

7.2 控制柜的维护

7.2.1 检查控制柜门

1. 控制柜的设计是全封闭的构造,但因散热风扇的使用,仅能确保在一定 程度上外部的粉尘、液体无法进入;

2. 要确保控制柜门在任何情况下都处于完好关闭状态,即使在控制柜不工 作时;

3. 开关控制柜柜门时,必须用钥匙打开;

4. 开关门时先用钥匙把锁打开,然后按手柄下方按钮,手柄翘起后轻拉手柄则打开控制 柜门。

7.2.2 检查密封构件部分有无缝隙和损坏

1. 打开门时,检查门的边缘部的密封垫有无破损;

2. 检查控制柜内部是否有异常污垢。如有,待查明原因后,尽早清扫;

3. 在控制柜门关好的状态下,检查有无缝隙。

7.3 风扇的维护

1. 风扇转动不正常,控制柜内温度会升高,控制柜可能就会出现异常故障,所以应检查 风扇是否转动正常;

2. 柜内风扇和背面轴流风扇在接通电源时转动,所以请检查风扇是否转动,以及感觉排风口和吸风口的风量,确认其转动是否正常。

7.4 风扇防尘网罩及门上防尘棉的维护

1. 风扇防尘网罩要视使用环境的情况定期清理,包括防尘网罩及网罩内的防尘棉,如果防尘网罩及防尘棉堵塞,则会降低轴流风扇的散热效果,造成控制柜内温度过高导致机器人系统异常;

2. 门上防尘棉也要定期清理,切断总电源,打开控制柜门,抽出防尘棉框,用清水清洗, 待水干后插回控制柜柜门相应位置。或者以其他方式清理防尘棉框,清理干净后插回控制柜柜 门相应位置。

7.5 急停按钮的维护

控制柜前门及示教盒上均有急停按钮, 上电前必须确认急停按钮是否能正常 工作。

7.6 供电电源电压的确认

按表 7.2, 用万用表交流电压档检测控制柜进线断路器 (QF0)上的 L1、L2、 L3 进

线端子部位,确认供电电源电压是否正常。

测定项目	端子	正常数值
相间电压	L1-L2、L2-L3、L2-L1	(0.85~1.1)×标称电压(AC
		380V)
与保护地线之间	L1-PE、L2-PE、L3-PE	(0.85~1.1)×标称电压 (AC
电压		220V)
(PE 相接地)		

表 7.2 供电电压检查

7.7 缺相检查

按表 7.3, 进行缺相检查试验。

检查项目	检查内容
检查电缆线的	请确认电源电缆线三相 220V 连接是否正确,若有配线错误及断
配线	线时,请更正处理
松本松) 中源	请准备万用表,检查输入电源的相间电压。
巡 旦	判定值: (0.85~1.1)×标称电压 (AC220V)
检查断路器	请打开控制电源,用万用表检查断路器 (QF0)的进线端及出线端
(QF0)	相间电压。 如果有异常,请更换断路器 (QF0)
有无损坏	

表 7.3 缺相检查

附录一: 伺服驱动器操作手册(精简版)

注意:

任何参数更改及试运转都有可能导致机器无法正常使用甚至发生撞击等机 械事故导致机器损坏,参数导入或试运转之前请联系我们。

谢谢合作!

1.准备工作

需要用到 R4 调试线、USB 转 485 串口线, R4 调试线插入驱动器的 X19 接口。 插入调试线后,右键点击"计算机",选择"设备管理器",展开"端口", 查看调试线占用端口号。

▲ 设备管理器	
文件(F) 操作(A) 查看(V) 帮助(H)	
(+ +) 🖬 📓 📷 💐	
4 🚔 PC-20170726EPHI	*
▷ 🚯 Bluetooth 无线电收发器	
▷ 🔮 DVD/CD-ROM 驱动器	
▷ - Cia IDE ATA/ATAPI 控制器	
▷- · IEEE 1394 总线主控制器	
▷ [m] PCMCIA 适配器	
▷ 📾 SD 主進配器	
> 💯 安全设备	
▶ 🔲 处理論	
▷ ;	E
> 🤪 电池	
▲ 1 徑 第日 (COM 和 LPT)	
- 徑 ECP 打印机油口 (LPT1)	
USB Serial Port (COM4)	
▷ (樂) 计算机	
▷-基 監視職	
▷	
▷ QII 人体学输入设备	
> 🕘 生物识别设备	
▶ 4 声音、视频和游戏控制器	
> 🕘 航辰和其他描针设备	
▷ (調制解測器	
▷-臺 通用串行总线控制器	-

图 1.1 设备管理器

2.建立通信

图 2.1 打开 DriveStarter

图 2.2 选择端口号

图 2.3 建立通讯界面

打开 DriveStarter,根据驱动器选择 对应版本。

选择调试线使用的端口号,点击 "CoolDrive"进行通讯。

建立通讯后界面。

3.获得控制权

	15 DriveStarter V2.2.2		C 04 14.14
	5:55(S) (#25(F) 234SF) I.M.(T) 5	ED(W)	
		🔄 🐌 🛤 🕸 🗢 🗳 👁 🕲 🗢 😂	
	19481 a 212++(1).	ninteinigenis bei ftabitt fonttig	● :社容利 ● :LOI比容
	BIL CORM3-015-P	RELIATED IN BERIDDE	CIRCING C
	toker - manifester	Not [04000000] 初始化放肆代码	
		*** (0-0000000) %@200	A 10 647
		→ GFT% 不会特别型的制度式	
		(140000000) 不可依复是符	
Testing: Image: production of the first	EXTERN POWERS: (NM)		(RM3/W)
	T02580 10822525: 04003	·····································	+ <u>#±0.8</u>
	Ebno Realistant	(0.400000040) 告帯状態 (1.500) (第一) (1.500) (第一) (1.500)	263
	後期末点力	00 00-000003FF1 (F-0-12-09	(cma) (cm)
	末层幅		88 E886 88
			(94/2) - (64/2)
	CoolDrive-R4		(45) (BH 84792
	-A 101 CORMS-015-P		HOT MLT
	- A #2. CDRM3-015-P		
	- A #03 CDRM3-015-P	C (MARDER-DA) 当題古智 したにX スカルの中代的サイ	EtwCAT(MEE)(d)
	- A #64. CD1M1-005	100 75至10月 11	Init
		12 新认方法	CED (2ED (2ED (2ED (2ED (2ED (2ED (2ED (2
		1.3 979 LB	Pae-Operational Bootstrap
			ion ion ion ion
			The Department
			sar-operatora
			30,05
			Cpromoted
AD5/F 29/5/99/24/ 00.11/1/25424/ 00.10/ 60 3 6 8 6 8 6 7 10 6 10 10 10 10 10 10 10 10 10 10 10 10 10			* CON
ABST#			+
🔞 🚰 🔗 🔚 💆 🦄 🎬 🔯 🧑 👘 🕫 🕫 🖓 🖓 👘	BOEITE	211-221-221-221-221-221-221-221-221-221	3017-07-31 16-32 A
	🙆 🏭 🎯 🗄	🔁 🥱 🎬 😰 🙆	rr 🖶 🕄 😪 🗞 🖄 😌 🥑 🔂 😓 🕈 🚚 😏 (653) (6

图 3.1 获得控制权

	. 1 3		49 04 1				快运
CORM MA HE SING MAR 2005	889. Stands	AND WEAR WEAR	TEX## 40.9/#	200 Kik ==	9월 4月 68		Þ
eStater configUebult.gp	•		- 28 82	RESE VILLA	4. Q.200 (1875) 1	0.6.8.13	850
A Process A Process	State R-RI 0 0.4200 11 0.4200 11 0.4200 12 0.4200 13 0.4200 14 0.4200 15 0.4200 15 0.4200 15 0.4200 15 0.4200	之中 《武器時代》、 道理的時期有 《武器時代》、 特別記書時代》、 《法》和公司 《武器時代》、 《法》和公司 《武器時代》、 《法》和公司 《武器時代》、 《法》和公司 《武器時代》、 《法》、 《法》、 《法》、 《法》、 《法》、 《法》、 《法》、 《法	5716 5716 2000 2000 2000 2000 2000 2000 2000 20	8-210 but 1000000 0-0000000 0-0000000 0-00000001 0-00000001 0-00000001 0-00000001 0-00000001 0-0000000 0-0000000 0-0000000 0-0000000 0-0000000 0-0000000 0-0000000 0-0000000 0-0000000 0-00000000	7.7.7 Cuestioned	E19/8/2 3 edulation edulat	
	(н		1		+ 1

图 3.2 伺服参数

修改当前值	X
Modes of operation	
控制模式设定	
0x00000000 ~ 0x000F000F	
Byte0:运行控制模式	10
0x00-模式不变	-
0x00-模式不变	
0x01-规划位置模式(PP)	
0x02-速度模式(VL)	
0x03-规划速度模式 (PV)	
0x04-规划转矩模式 (PT)	
0x05-保留	
0x06-寻原点模式(HM)	
0x07-插补位置模式(IP)	
0x08-周期同步位置模式(CSP)	
0x09-周期同步速度模式(CSV)	
0x0A-周期同步转矩模式(CST)	

图 3.3 运动控制模式

- (1)选择"轴1";
- (2) 选择"参数;
- (3) 选择"伺服参数"。

(1) 选择"基本控制参数";

(2) 选择"控制模式设定";

(**3**)选择子菜单"控制模式 设定"。

(4)轴 2、轴 3、轴 4 重复轴1 操作,使 DriveStarter 可以获得控制权。

修改 "Byte0 运动控制模式" 中 "0x00-模式不变"为 "0x08-周 期同步位置模式"。

图 3.4 上电默认控制模式

	■ ECAT	22	实际速度观测值:	
高級所有轴当前故障	C k	202	速度指令值:	
→ 1. Cl ② 软复位所有轴	B	200	速度目标值:	
● 轴2. CI 参 所有轴电机控制权	A+	DriveStarter	3	
● 轴3. Cl ● 所有轴电机模式	⊻.	EtherCAT M	aster [TwinCAT]	
1 轴4. Cl 🥝 恢复所有轴参数出厂值	II	EtherCAT M	aster [KEBA]	
清除所有轴历史故障	£	EtherCAT M	aster [Standard]	
A S 高龄所有轴当前故愿 ▲ 5 高龄所有轴电机控制权 ▲ 5 次复位所有轴 ▲ 5 所有轴电机控制权 ▲ 5 所有轴电机模式 ▲ 5 () 所有轴电机模式 ▲ 5 () 所有轴电机模式 ▲ 5 () 所有轴电机模式 ▲ 5 () 所有轴电机模式		草を 体 の 前 近 近		
₩ 7月17月17日1日20155263(9里	111			

图 3.5 获得控制权

修改"Byte2上电默认控制模 式"中参数为"0x08-周期同步位 置模式"。

(1) 选择屏幕左下方

"CoolDrive-R4";

(2)选择"所有轴电机控制权";

(3)选择"DriveStarter";

(4)选择"软复位所有轴", 此时软件获得控制权。

4.查看报警状态

(1)点击左侧"轴号"选择要查看信息的轴;

(2)点击"故障状态"来查 看相应的报警信息;

(3)所查看轴的报警信息;

(4)报警详细信息、确认原 因及处理办法。

图 4.1 查看报警状态

5.报警复位

故障确认清除后,右键报警轴 号,选择"设备控制",选择"故 障清除"即可清除报警,完成报警 复位。

图 5.1 查看报警状态

6.参数导入/导出

图 6.1 参数导入导出 7.试运转(试运转前必须导入参数)

选择菜单栏"参数"→"伺服 参数"→"导入参数/导出参数" 即可导入/导出对应轴的电机参 数,其中轴1、轴2、轴3电机参 数和一致。

选择将要测试的轴号(实例中 为轴 4),选择菜单栏"功能", 然后选择"试运转",进入试运转 模式。

点击"模式选择",选择子菜 单中"简易点动"。

确认进入试运转模式。

0xFF 00000 编码器清零(Z) →中四個演绎(Z) ■ 电子铭牌(P)... 00000 00000 发生告
 技生告当
 控制
 参数辨识与整定(1)

 主电源掉电
 初始
 清除历史故障(C)
 00000 00000 609. 00000 电机未出力 10 数据跟踪(T)... 未限幅 ● 故障追踪数据(F)… EEPROM数据(E)...
 RX
 CoolDrive-F
 ADC校准参数(A)...

 ● 轴1. CD
 生产测试(O)
 ····• 轴1. CD 生产测试(O) ····•• 轴2. CDRM3-015-P 0x0000F 图 7.1 选择试运转 🔜 轴 4 试运行 - • • 1024 inc (-2147483648 ~ 2147483647) 点到点 🛃 点到点 手动单步运行位置增量 🔁 简易点动 手动单步运行速度 1747630 inc/s (0 ~ 2147483647) ⚠ 编程点动1 手动单步运行加速度 100 inc/(ms2) (0 ~ 2147483647) 🗠 编程点动2 手动单步运行减速度 100 inc/(ms2) (0 ~ 2147483647) 🔁 正弦点动 🦯 简易转矩规划 🔂 编程转矩规划1 t

OriveStarter V2.2.2

设备状态

写入 开始 停止

控制权: DriveStar

系统(S) 参数(P) <u>功能(F)</u> 工具(T) 窗口(W)

电机模式(V)

设备控制(C)

更改模块备注(M)...

设置模块地址(S)...

转子补偿角检测(D)..

🏠 🎉 🔳 🍋 控制权(C)...

轴4. Cl 🍞

後日 秋据

又击敌 100000

00000 0000F

.

.

图 7.2 模式选择

加速度

🗠 编程转矩规划2

🔁 正弦转矩规划

V: 速度, P: 位置

模式选择

确认			23
<u>^</u>	请确认电机处于可连续运动 对于电机运动范围受限的场 是否要切换到 [简易点动]	加的安全状态! 汤合,此运行模式可能导致 模式?	危险发生!
		是(Y)	否(N)
写入	开始 得止	🗠 盖弦转矩规划	現めき祭

图 7.3 进入试运转模式

图 7.4 试运转流程

图 7.5 结束试运转

8.交还控制权

CoolDatus	D.4		➡ ECAT		实际速度观测值:	
	0	清除所有轴当前故障 软复位所有轴	⊆ ≵ R		速度指令值: 速度目标值:	8
• • • • • • • • • • • • • • • • • •	6	所有轴电机控制权	A۲	DriveStar	ter	
·····• • • • • • • • • • • • • • • • •	0	所有轴电机模式	<u>∨</u> ►	EtherCAT	Master [TwinCAT]	
<u>ん</u> 轴4. Cl	0	恢复所有轴参数出厂值	I	EtherCAT	Master [KEBA]	
	٢	清除所有轴历史故障	C	EtherCAT	Master [Standard]	

图 8.1 交还控制权

此步骤极其重要,必须执行,否则示教器无法控制机器人,重启无效。

务必更改"手动点动慢速"参数为 10 并写入。

请勿勾选连续控制。

请勿使用"快速正转/快速反 转"。

试运转流程为:

更改"手动电动慢速"参数为 10 并写入;

0开与八;

伺服使能;

慢速正转;

慢速反转;

伺服禁止。

点击右上角"×"并确认,关闭试 运转。

- (1) 选择屏幕左下方"CoolDrive-R4";
- (2) 选择"所有轴电机控制权";
- (3) 选择 "EtherCAT Master[KEBA]",将控制权交还给 Keba。

附录二: 阿童木机器人五点示教和三点示教

本手册主要讲解如何对带有视觉系统的机器人进行五点示教,保证机器人正常运行。

1 五点示教的步骤

1.1 示教器变量定义

首次登陆机器人时,我们需要建立传送带,物件,视觉坐标系等一系列变量, 然后对新建的变量进行配置。通过五点示教,将传送带,物件,视觉坐标系联系 到一块。

主要变量定义,使用示教器时,点击菜单键,在变量监测中新建下面类型的 变量。注意,CONVEYOR 变量名必须和 IEC Technology 下的传送带名字一致。

变量	数值
+ S系统	
+ ▲应用	
— M机器 [Delta]	
ConveyorBelt: CONVEYOR	[]
+ d0: DYNAMIC	
+ DefaultTool: TOOLSTATIC CON	IST
+ obj0: TRACKOBJECT	
+ or0: OVLREL	
+ RobotBase: REFSYSSTATIC C	ON
+ RobotData: ROBOTDATA CON	ST
+ TrackigDateBase: CARTREFS	/S []
+ L程序: [IEC]	
₽项目 [ConvTest]	
╋ L 程序: [Program]	

图 1.1 示教器变量定义

1.2 视觉追踪向导设置

第1步:在示教器上点 击菜单键,进入"视觉追踪" 向导界面。

图 1.2 进入视觉追踪

传输带 MConveyorBelt ▼ 己初武化 ✓ 己使	第2步:视觉追踪向导界面"总览"
多於 附情况下可进行选择 坐标系统 MTrackigDateBase	界面。在"传送带"下选择需要示教的传
视觉坐标系,具体过标定获得	送带变量名。
^{传输带} 传动带分辨率,通过标定获得37.50	
当前传输带速度 0.0	
工作区(X-万问) 750.00 / 1,100.0 接受区域极限(最大/最小) 700.00 / 1,050.0	
智能目标规划	
 ✓ 于工作区起始点开始等待 ✓ 干工作区线点停止 	
✓ 使用平滑移动	
总览 统计 诊断	
图 1.3 视觉追踪向导	
	答之上,对什论世纪与方"小
44 x x 4 m	弗 3 亚: 刈传达审进打协正, 在" 反
传送带	置"界面中选择"传送带"。
and the second se	
设置	
诊断 设置	
图 1.4 设置传送带	

第4步:通过上面	ī一步,会显示未
标定的视觉坐标系统。	然后点击"向后'
进入下一步。	

第5步:进入对示教方法进行选择 界面,我们先介绍照视觉(2D)的标 定。点击"向后"进入下一步。

传输带	MConveyorBelt
对象坐标系	MTrackigDateBase
图示	
- / / / /	P3 🖤
	P1 P2 T

в

BC

0.000 mm 0.000 mm 19.038 mm ~

0.000 0.000 0.000

村象坐标系 村象坐标系 対象坐标系 対象坐标系 数坐标系

工具手当前位置

z

图 1.6 选择示教方法

对象坐标系 图示 使用照相机监测待道路 检查区域扬角处 工化振取	MTrackigDateBase	9 P3 P3 N2 N2 N3 N3 N3 N3 N3 N3 N3 N3 N3 N3
图示 使用照相机监测待道路 检查区域扬角处 工作通取	正 杆,为了取得最佳监测	P3
使用黑相机监测待道路 检查区域拐角处	正 件,为了取得最佳监测	P3 一 效果,该工件应处于
工化加取		
对象参数		
x	10.000	mm
Y	20.000	mm
编码器参数		
位置	60,004	线
	工件抓取	Ì

图 1.71 号物件在视觉下信息

第6步:进入标定过程,获取1号 物件视觉下的信息。注意该过程中,必 须使传送带能够通过外部按键启停。首 先,保持传送带静止,在视觉范围的某 一个顶点,放置1号物件;然后点击"工 件抓取"按钮,界面显示"等待待追踪工 件到达..."字样。再使用视觉进行拍照, 在系统中生成1号物件信息;此时物件 的坐标值、编码器数值会出现在下面的 显示框中。点击"向后"进入下一步。

対象坐标系 M TrackigDateBase 思示 P** ● 「「「」」」」 記方 P** ● 「」」」 日本 「「」」」 日本 P** ● 「」」」 日本 「「」」」 日本 ● 「」」」 日本 ● 「」」」 「「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」」 「」」」 ● 「」」 「」」」 ● 「」」 「」」」 ● 「」」 「」」 ● 「」」 ● 「」」 ● 「」」	传输带	MConveyorBelt		
#示教 ###################################	对象坐标系	MTrackigDateBas	e	
	刻示			
		P1 2 -	6	
R初传输带移动工件入工作区内并示校 1 金 - 4 秋 - 5 原点 X 0.003 mm Y 0.000 mm Z 780.964 mm 信約38参数 位望 70.044 続				
1条生标系原点 X0.003 mm Y0.000 mm galageを数 位置70,044 載		X T PATE IN THE WA		
i象坐标系就点 X0.003 mm Z790.964 mm 協科器参数 位置700.044 載				
家坐标系原点 4 4 0.000 mm 1				
 家 - 40.003 mm (
 家 坐标系 照点 4.0.003 mm 7.0.000 mm 4.780.964 mm 自時選参数 2 面 70,044 线 				
象中标系型点 K 0.000 mm K 0.000 mm C 780.964 mm 自時要参数 文質 70,044 載				
象世标系原点 X - 0.003 mm Y - 0.000 mm g - 760.964 mm 協科器参数 位置 70,044 线 示教				
1余坐标系原点 X 0.003 mm g 780.964 mm 位置 70.044 线 示教				
x0.003 mm x0.000 mm g790.964 mm 位置 示教				
A 0.000 mm ズ 0.000 mm 第一部部数 位置 70,044 載 示数	日象坐标系原点			
Y 0.000 mm Z -780.964 mm 位置 70,044 线	→象坐标系原点 ¥	.0.003		
Z .780.964 mm 编时35参数 位置 70,044 线	时象坐标系跟点 X	-0.003]mm	
编网器参数 位置 70,044 线 示教	时象坐标系原点 X Y	-0.003 0.000]mm]mm	
位置 70,044 线	时象坐标系原点 X Y Z	-0.003 0.000 -780.964]mm]mm]mm	
(公置 70.044) 載 示教	时象坐标系原点 X Y Z	-0.003 0.000 -780.964]mm]mm]mm	
示教	対象坐标系原点 X Y Z 編码器参数	-0.003 0.000 -780.964]mm]mm]mm	
示教	1家坐标系原点 X Y 编码器参数 位置	-0.003 0.000 -780.964 70.044]mm]mm]mm	
示教	対象些标系原点 X Y 編码器参数 位置	-0.003 0.000 -780.964 70,044]mm]mm]mm	
	时象坐标系原点 X X Z 位置	-0.003 0.000 -780.964 70,044]mm]mm]mm	
	対象坐标系原点 X Y Z 編码器参数 位置	-0.003 0.000 -780.964 70,044]mm]mm]mm]线	

第7步:进入P1点示教界面。启动 传送带,将1号物件移动到机器人的工 作空间内(刚好进入工作空间),然后 停下传送带;手动将机器人移动到1号 物件上方的抓取位置(即图8中所示P1 点);点击"示教"按钮,此时机器人的 位置、编码器位置都会被记录下来。点 击"向后"进入下一步。

图 1.81 号物件在 P1 点的信息

16:40.00.	M ConveyorBelt		
对象坐标系	MTrackigDateBas	e	
图示			
	P3		
	9 P2 2		
_			
-			
自动传输带移动工件	接近至工作区末并示教		
计分码标准由于占			
才象坐标轴上点 ¥	09.970		
才象坐标轴上点 ×	99.970	mm	
†象坐标轴上点 X	99.970 -0.000	mm mm	
t象坐标轴上点 X Y	99.970 -0.000 -780.964	mm mm mm	
甘象坐标轴上点 X Y Z	99.970 -0.000 -780.964	mm mm mm	
才象坐标轴上点 X Y g码器参数	99.970 -0.000 -780.964	mm mm	
才象坐标轴上点 X Z 编码器参数 位置	99.970 -0.000 -780.964 72,067	mm mm d线	
1家坐标轴上点 X Y 編码器参数 位置 分辨率	99.970 - 0.000 - 700.964 - 72.067 - 20.236	mm mm 线/选水	
1家坐标轴上点 X Y 【 编码器参数 位置 分辨率	99.970 -0.000 -780.964 72,067 20.236	mm mm dt dt/毫米	
计象坐标轴上点 X Y Z 编码器参数 位置 分辨率	99.970 - 0.000 - 780.964 72.067 20.236 示教	mm mm mm 线/毫米	
対象坐标摘上点 X Y Z 編码器参数 位置 分辨率	99.970 4.000 -780.964 72.067 20.236 示教	mm mm mm 线/毫米	

图 1.91 号物件在 P2 点的信息

对象坐标系	
传输带	MConveyorBelt
对象坐标系	MTrackigDateBase
图示	
使用照相机监测特延伸尽可能靠近检查区	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
工件抓取	
×	10.000 mm
Y	40.000 mm
编码器参数	
位置	72,067 线
	工件抓取
取消	< 向前 前后>

图 1.10 2 号物件在视觉下的信息

第8步:进入P2点示教界面。再次 启动传送带,让1号物件继续移动,尽 量靠近机器人工作空间的末端时(但仍 需要保证机器人能抓取到工件),停止 传送带。手动将机器人移动到1号物件 上方的抓取位置(即图9中所示 P2 点);点击"示教"按钮,此时机器人的 位置、编码器位置都会被记录下来。此 时,1号物件的示教工作完成,点击"向 后"进入下一步。

第9步:获取2号物件视觉下的信息。1号物件的示教工作上面已经完成,下面对2号物件(同1号物件相同)进行示教。但此时应将2号物件放在视觉范围内的1号物件的对角点上(为了提高精度,与工件1在Y方向上,要有一个尽量大的偏差)。然后点击"工件抓取"按钮,界面显示"等待待追踪工件到达..."字样。再使用视觉进行拍照,在系统中生成2号物件信息;此时物件的坐标值、编码器数值会出现在下面的显示框中。点击"向后"进入下一步。

1.6 400 405	M ConveyorBelt	
对象坐标系	MTrackigDateBas	e
图示		
动传输带移动工作	非接入工作区内并示教	
甘象坐标平面点		
· 和 · · · · · · · · · · · · ·	-3.176	mm
オ象坐标平面点 X Y	-3.176 20.002	mm
1象坐标平面点 X Y Z	-3.176 20.002 -780.964	mm mm
オ象坐标平面点 X Y Z	-3.176 20.002 -780.964 0.3	mm mm %
対象坐标平面点 X Y Z X精度错误	.3.176 20.002 -780.964 0.3	mm mm %
İ家坐标平面点 X Y Z X精度错误 	-3.176 20.002 -780.964 0.3 -0.0	mm mm % %
±象坐标平面点 X Y Z X精度错误 	-3.176 20.002 -780.964 0.3 -0.0 82,043	mm mm % % %
オ家坐标平面点 X X X 精度错误 編時器	3.176 20.002 -780.984 0.3 -0.0 82,043 示教	mm mm %6 %6 线
オ象坐标平面点 X Y Z X精度错误 Y 精度错误 編码器	-3.176 20.002 -780.964 0.3 -0.0 82,043 示教	mm mm % % %

图 1.11 2 号物件在 P3 点信息

Numin Interview 対象生転系 MTrackigDateBase 阿示 P4 P4 P4 「日本 P4 「日本 P4 P4 P4 <tr< th=""><th></th><th></th><th>M ConveyorBelt</th><th>At 60 25</th></tr<>			M ConveyorBelt	At 60 25
The second sec			MTrackigDateBase	对象标志系
P4 P3 p3 p3 p4位显然于化输带上 3.176 X 3.176 Y 20.002 Z -768.388 示教 -				89.772
本 本 本			P4 🌑	
P4位置处于传输带上 X -3.176 M 20.002 mm -768.386 mm 示教			· · · · · · · · · · · · · · · · · · ·	
両上移动机器入(As高传送带)然后示教新的位置。点4只差用3 P4位置处于传输带上 X 20.002 mm Z 768.386 mm 示教 法果坐标系			P3	_
A 上移动机器入(05為传送帝)然后示被频的位置。点4 其是用3 P4位置处于传输带上 X 3.176 mm Y 20.002 mm 了66.388 mm 示数 古星生标系			9	-
A 上移动机器人(36.高传送带)然后示被新的位置。点4 只是用3 44位置处于传输带上 X769.386 mm				
4 (2 宮处于夜输带上: X 3.176 mm Y 20.002 mm Z768.388 mm 示教 6 思生标系	34:45:85		(1.17, PD) (1.17, 20, 20, 02, 17, 20)	a to any sets and any star where
4位夏处于传输带上 X -3.176 mm y 20.002 mm z -769.386 mm 示教	米和認知	点4只应用	传达帝国然后不改新的位置。	可_LL来多次历初长常常。人 (北东部)
4位贸处于传输带上 X -3.176 mm Y 20.002 mm Z -768.386 mm 示教 卫生生标系				
4位翌处于传输带上. X -3.176 mm Y 20.002 mm E -768.386 mm 示教				
4位贸处于传输带上 X 3.176 mm Y 20.002 mm 元教 家教				
4位翌处于传输带上: X 3.176 mm Y 20.002 mm Z -768.386 mm				
4(2 宫处于传输带上: X -3.176 mm Y 20.002 mm Z -768.386 mm 示教				
4位贸处于传输带上 X -3.176 mm y 20.002 mm Z -769.396 mm 示教				
4位夏始于传输带上 X -3.176 mm Y 20.002 mm Z -766.386 mm				
24位夏处于传输带上 X -3.176 mm Y 20.002 mm Z -768.386 mm 示教 古果坐标系				
X -3.176 mm Y 20.002 mm Z -766.386 mm				4位置处于传输带上
Y 20.002 mm Z -769.386 mm		mm	-3.176	
Y 20002 mm Z -768.386 mm 示教				×
Z mm 示教 站平坐标系		mm	00.000	×
法果坐标系			20.002	×
示教 這來坐标系		mm	20.002	x y z
前果生存.系		mm	20.002	Y Z
拉果坐标系		mm	20.002 -768.386 示教	Y Z
		mm	20.002 -768.386 示教	x y
		mm	20.002 -768.386 示教	X Z
		mm	20.002 -768.386 示教	X
		mm	20.002 -768.386 示教	x y z
		mm	20.002 -768.386 示教	×
		mm	20.002 -768.386 示教	×

第10步:进入P3点示教界面。启 动传送带,将2号物件移动到机器人的 工作空间内然后停下传送带;手动将机 器人移动到2号物件上方的抓取位置 (即图11中所示P3点);点击"示教" 按钮,此时机器人的位置、编码器位置 都会被记录下来。且计算出X精度错误 和Y精度错误,如果错误大于5%,则五 点示教失败,无法继续向后进行,根据 错误提示进行调整,然后再次进行五点 示教,如果错误小于5%,则点击"向后"

第11步:进入 P4 点示教界面。将 机器人手动沿着 Z 轴向上抬升一定距 离,再次"示教"P4 点。点击"向后"进入 下一步。

进入下一步。

图 1.12 2 号物件在 P4 点信息

传输带		MConveyorBelt				
对象坐标系	1象坐标系 🚺		MTrackigDateBase			
与果数据						
编码器参数						
分辨率				20.236	线/毫米	
坐标系统参	数					
工件	高度			0.000	mm	
基坐标系		S Wor	Id		~	
x	-506.160	mm	A		-0.000	
Y	-20.000	mm	в		0.000	
z	-780.964	mm	с		0.000	
- 19 - 10 M						
前信手具工	位置					
11.具手当前 (位,置 502.983	mm	A	-11	30.000	
工具手当前 [,] 《 《	位置 502.983 40.002	mm	A	-18	30.000	
工具手当前 [,] < <	位置 502.983 40.002 12.578	mm mm	A B C	-11	30.000	

图 1.13 标定出信息查看

第12步:此时,我们就通过上面的标定功能,自动计算出了视觉坐标系相对于机器人坐标系的偏移和编码器的分辨率。点击"确认"对该信息进行保存。

配 ConveyorBeit ご 日初成化 ご 日初成化 ご 日成低 近年12 こののの 示数 最大 6 200.00 mm 示数 示数 最大 b 800.00 mm 示数 成為大会 b 800.00 mm 示数 成為大会 b 500.00 mm 示数 成為大会 b 500.00 mm 示数 周辺の大会 500.00 mm 示数 日本 自动点が停 功能電電数活。 国本 自由 自由	
工作区 線小 ・ 200.00 mm 示赦 線大 b 800.00 mm 示赦 規設人只会于物件在工作区域内时进行限定。 企業度 東面中自动 広府 功能需要法。 関示	/
 歳小 a 200.0 mm 示数 破火 b 800.0 mm 示数 のm 示数 のの mm 示数 のの の mm 示数 のの の mm 示数 のの のm 示数 のの のm 示数 取示 個示 m m 	
最大 b 800.00 mm 示教 現選人員会予告告在工作区域内封進行選認。 示教 現選人員会予告告在工作区域内封進行選認。 </td <td></td>	
現然人具会于物件在工作区域内附近行到底。 在報意其面中自动 幻停 功能需款活。 附示 正 面、 能大工作区域位置	
一 最大工作区域位置	
a 最大工作区域位置	
 b 赖小工作区域 c 工作区域 d 传送带运行方向 	

图 1.14 传送带工作区域设置

第 14 步:对机器人接收物件信息的 范围进行设置。我们通过"示教" e、f 两 点来限制机器人接收物件信息的范围, 正常情况下: e<a、f<b。点击"向前"进 入下一步。

第13步:进入传送带"设置"界面,

对传送带的抓取范围进行设置。我们通过"示教"a、b两点来限制机器人抓取范

围。点击"向前"进入下一步。

图 1.15 机器人接收物件信息的范围设置

作(K & A d d d d d d d d d d d d d d d d d d		×	63 67 6 76	- G0	CIII0 9
(月東距离) j 10.00 mm (月東距离) 増大同步 (月東西海陽要时) (日本西南東市村民辺男停止等待下一个待追踪目标。 (日本西南東市村民辺男停止等待下一个待追踪目标。 (日本西南東市民)	×起点				
▶ 增大四步 崩洗如服要时 奎阳示何机器人在最小工作区边算停止等待下一个待道路目标。 同步距离内机器人加速传输带速度。	距离		J	1	0.00 mm
	増大同步				
■ (他务師服务件) 第二時代期 及年齢 第二時代期 及年齢 第二時代期 第二時代期 「日本市長」 「日本市長」 日本市長辺(出当千) 日本市長辺(出当千) 日本市長辺(出当千)	and the design with the				
產用示何机器人在最小工作区边房停止等待下一个特迫端目标。 同步距离内机器人加速传输带速度。 - 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	间1769-301 188 35-0°	3			
同步距离内机器入加速传输带速度。 奈 - 一 一 一 一 一 一 一 一 一 一 一 一 一 一	图示例机器人在	最小工作区间	4界停止等	待下一个特别	临时标.
示 ● ● 小工作区 雨歩距离 工具于建度 (相当于 目标函源速度)	步距离内机器人	加速传输带达	业月度,		
示 最小工作区 同步距离 工具予規度 (相当于 目标函题速度)					
示 - 新小工作区 - 市場現落 - 二八千歩規復 日标道際速度(相当于 日标道際速度)					
示 					
赤 一般小工作区 同步距离 二工作予規度 (担当于 目标通鑑速度)					
亦 - 新小工作区 - 阿小和路 - 二八千秋度 - 代始帝波度(相当于 日标函称波度)					
赤 極小工作区 同步距离 …工具予減度(相当于 目标函题速度)					
示 - 版小工作区 - 原乃本作区 - 所乃考納版 - 作物等進度(円当于 日标道路速度)					
示 					
示 					
- - - - - - - - - - - - - -					
- 新小工作区 同边规器 - 工具子動成 化给菊波度(相当于 目标函称速度)	×.	L.	1	-	
- 最小工作区 同步距离 工具予制度 (相当于 目标通题速度)	׆-	I * <u></u>	j.	-	
- 最小工作区 同步程度 - 工具子政度 (相当于 目标:JKK/建度)	×1	-		-	
- 最小工作E 同步距离 工具于建度 (相当于 目标函源速度)	×1	-	-	-	
	Ť	•	-	-	
- 報告工作区 可請規定 - 工具手動度 化物面強度(相当于 目标函鑑速度)	Ť		,	+	
而以上山中区。 二工具子建度 (相当于 目标:追踪速度)	Ť		,	1	
100步取高 二八月子兼度 化输带速度(相当于 目标追踪速度)	6.4.7 MIX	a	~	*	
二工人予約度 (相当于 目标前原連贯)		a	-	* *	
.化输带速度(相当于 目标追踪速度)	₹ ● 小工作区 1 少距离	a	-	+	
目标追踪速度)	▲小工作区 1步距离 に具手速度	a	-	* *	
FT ALANTING VET IN L	↓ ↓ ↓ ↓ ↓ 小工作区 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	T.	-	*	
	●小工作区 □ □ □ □ □ □	Ŧ	-	*	
	於小工作区 // 沙距离 C具手速度 输带速度(相当 日标追踪速度)	Ŧ	,	*	
	●小工作区 □	Ŧ	7	*	
	●小工作区 □ □ □ □ □ □	Ŧ	,	*	
	⑥小工作区 沙距离 に具手速度 输带速度(相当 目标道辉速度)	÷ a	,	*	

图 1.16 机器人接收物件信息的范围设置

第15步:工作区域起点同步距离设置。点击"向前"进入下一步。

图 16 工作区域起点同步距离设置

第16步:工作区域终点停止距离设置。点击"向前"进入下一步。

传输带			
M ConveyorBelt	▼ 己初试化	🖌 己使能	
工作区终点			
同步距离	m	10.00	mm
✔ 増大同步			-4
距离如需要时			
示意图示例当追踪中的目标 在同步距离内机器人减速至	禄出可达区域。 静止。		
图示			
	m		
b最大工作区 m 同步距离			
n工具手速度			
 传输带速度(相当于 目标追踪速度) 			
取消		< 后退	向前 >

图 1.17 工作区域终点停止距离设置

第17步:智能目标规划平滑因子设置。点击"完成"。

图 1.18 智能目标规划平滑因子设置

2 三点示教的步骤

2.1 传感器追踪向导设置

传感器追踪向导设置同上面的视觉追踪向导设置只是标定过程不同,对应了

视觉追踪向导设置中的第5步到第12步。下面对这部分内容进行介绍。

本内容只是针对一个传感器生产物件,即该传感器产生的物件信息必须是位于传送带前进的一条直线上。

第1步: 在示教器上点击菜单键, 进入"视觉追踪"向导界面;

图 2.1 视觉追踪向导所在位置

第2步:视觉追踪向导界面"总览"界面。在"传送带"下选择需要示教的 传送带变量名,如图 20 所示。

M ConveyorBelt	$\overline{}$	已初试化		/ 己使能	e 🗸
多念情况下可进行	〕 选择				
坐标系统		MTrackig	Date	eBase	7
	视	觉坐标	系	,具体	参数
	过	标定获	得		
传输带	र नेव		**	/=	
精度	-,	1310/CE	.3~	37.500	线/毫米
当前传输带速度				0.00	毫米闲
工作区(X-方向)		750.00	1	1,100.00	mm
接受区域极限(最大/最小		700.00		1.050.00	mm
				.,	1
智能目标规划					
✓ 于工作区起始点开	始等待				
✓ 于工作区终点停止					
✓ 使用平滑移动					
26 HW		1	1	·合助:	345 997
忠见 统计				12101	EX. 10

图 2.2 视觉追踪向导界面总览

第3步:对传送带进行标定,在"设置"界面中选择"传送带",如图21 所示。

图 2.3 选择传送带

第4步:通过上面一步,会显示未标定的视觉坐标系统。然后点击"向后" 进入下一步。

alomrobol®
阿童木机器人

155,400,405		MCon	veyorBelt	
对象坐标系		MTrac	kigDateBas	e
1象坐标系;	史置			
基坐标系				
S World				V
相对基坐标	系位置和位姿			
			_	
×	-1,000.000	mm	A	0.000
Y	0.000	mm	в	0.000
z	-800.000	mm	с	0.000
				· · · · · ·
二具手值				
二具手值				
〔具手值				
二具手值				
工具手值	位置			
二 <u>具</u> 手值 工具手当前 X	位置	mm	A	0.000
<u>工具手值</u> 工具手当前 X	位置 1,000.000 0.000	mm	A _	0.000
<u>二</u> 具手值 工具手当前 Y	位置 1,000.000 0.000 19,038	mm mm	A C	0.000
 二具手值 工具手当前 X Y Z 	位置 1,000.000 0.000 19.038	mm mm	A B C	0.000 ° 180.000 ° -180.000 °

第5步:进入对示教方法进行选择界面,此时我们选择光传感器(1D)进行标定。点击向后进入下一步。

传输带	MConve	/orBelt		
对象坐标系	MTrackig	DateBase	,	
图示				
z	P1	P3	P2	5
示教方法				
武教方法 文 照相机(2D)				

图 2.5 传感器(1D) 标定

第6步:进入标定过程,使用传感器生成物件信息。首先,放置1号物件在

传送带上,此时离触发传感器存在一定距离。然后点击"工件抓取"按钮,界面显示"等待待追踪工件到达..."字样。启动传送带,物件触发传感器,生产物件信息并记录编码器数值。点击"向后"进入下一步。

1.5 (0) (1)	MConveyorBelt
对象坐标系	MTrackigDateBase
图示	
更用光开关监测待证	自踪工件
工件抓取	
工件抓取 对象参数	
工件抓取 对象参数 X	0.000 mm
工件抓取 对象参数 X Y	0.000 mm 0.000 mm
工件抓取 对象参数 X Y 编码器参数	0.000 mm 0.000 mm
工件抓取 对象参数 X 编码器参数 位置	0.000 mm 0.000 mm 50,221 线
工件抓取 对象参数 X 编码器参数 位置	0.000 mm 0.000 mm 50,221 线 工件抓取

图 2.61 号物体触发传感器

第7步:进入 P1 点示教界面。启动传送带,将1号物件移动到机器人的工作空间内(刚好进入工作空间),然后停下传送带;手动将机器人移动到1号物件上方的传感器触发位置(即图 25 中所示 P1 点);点击"示教"按钮,此时机器人的位置、编码器位置都会被记录下来。点击"向后"进入下一步。

传输带	MConveyorBelt	
对象坐标系	MTrackigDateBase	e
图示		
	P1 0	
-1. 14. 10. 10. 101	the same the tracks do not dela	
14月1至相附市1多4月二	计八工作区内开小领	
1象坐标系原点		
す象坐标系原点	0.000	
†象坐标系原点 X	0.000	mm
寸象坐标系原点 X Y	0.000	mm
寸象坐标系原点 X Y Z	0.000 0.000 -780.964	mm mm
寸象坐标系原点 X Y Z	0.000 0.000 -780.964	mm mm
才象坐标系原点 X Y 3 <td>0.000 0.000 -780.964</td> <td>mm mm</td>	0.000 0.000 -780.964	mm mm
甘象坐标系原点 X Y Z 编码器参数 位置 位置	0.000 0.000 -780.964 59.965	mm mm mm
·甘象坐标系原点 X Y Z 编码器参数 位置	0.000 0.000 -780.964 59,965	mm mm mm 线
寸象坐标系原点 X Y 编码器参数 位置	0.000 0.000 -780.964 59,965	mm mm mm 线
寸象坐标系原点 X Y G置	0.000 0.000 -780.964 59,965	mm mm mm 线
甘象坐标系原点 X Y Z G	0.000 0.000 -780.964 59,965	mm mm mm 线

图 2.71 号物体 P1 点信息

第8步:进入 P2 点示教界面。再次启动传送带,让1号物件继续移动, 尽量靠近机器人工作空间的末端时(但仍需要保证机器人能抓取到工件),停止 传送带。手动将机器人移动到1号物件上方的传感器触发位置(即图 26 中所示 P2 点);点击"示教"按钮,此时机器人的位置、编码器位置都会被记录下来。 此时,1号物件的示教工作完成,点击"向后"进入下一步。

1 ak Li Vir Ak		
传输带	M ConveyorBelt	
对象坐标系	MTrackigDateBase	e
图示		
		1
对象坐标轴上点 X	100.001	mm
付象坐标轴上点 X Y	100.001	mm
付象坐标轴上点 X Y Z	100.001 -0.011 -780.964	mm mm
对象坐标轴上点 X Y g 确码器参数	100.001 -0.011 -780.964	mm mm mm
对象坐标轴上点 X Y 编码器参数 位置	100.001 -0.011 -780.964 62,153	mm mm 线
付象坐标轴上点 X Y z 编码器参数 位置 分辨率	100.001 -0.011 -780.964 62,153 21.880	mm mm mm 线/毫米
d 象坐标轴上点 X Y Z 编码器参数 位置 分辨率 G	100.001 -0.011 -780.964 62,153 21.880	mm mm mm 线/毫米

图 2.81 号物体 P2 点信息

第9步:进入 P3 点示教界面。将物件摆放在与传送带前进方向垂直的位置。

点击"示教"按钮,此时机器人的位置。点击"向后"进入下一步。

对象坐标系				
传输带	MCo	nveyorBelt		
对象坐标系	MTra	ckigDateBas	е	
图示				
		P3 •	_(
₩ -L-TFT差版主任		XL7T4NA		
传输带附加位置	値			
位置参数				
x		75.663	mm	
Y		134.378	mm	
z		-780.964	mm	
Y轴负方	向示教			
Her calls	0	0 0		

图 2.9 物体在 P3 点信息

第10步:进入P4点示教界面。将机器人手动抬升一定距离,"示教" P4 点。

点击"向后"进入下一步。

传输带	MConveyorBelt	
对象坐标系	MTrackigDateBase	9
图示		
24位置处于传输带上		
24位置处于传输带上 X	75,663	mm
24位置处于传输带上 X Y	75.663	mm
^{24位} 置处于传输带上 X Y Z	75.663 134.378 -737.881	mm mm
24位置处于传输带」 X Y Z		mm mm
24位置处于传输带上 X Y Z 古果坐标系		mm mm
24位置处于传输带上 X Y Z 古果坐标系	75.663 134.378 -737.881 示教	mm mm

图 2.10 物体在 P4 点信息

第11步:此时,我们就通过上面的示教功能,自动计算出了传感器坐标相 对于机器人坐标的偏移和编码器的分辨率。点击"确认",对该信息进行保存。 其他设置和视觉追踪设置相同。

传输带		MConveyorBelt				
对象坐	标系	MTrackigDateBase				
结果数据	居					
编码器	参数					
分辨率				21.880	线/毫米	
坐标系	统参数				4.:	
	工件高度			0.000	mm	
基坐标	系	S World			$\mathbf{\nabla}$	
x	-445.343	mm	А		-0.006	
Y	0.049	mm	в		0.000	
z	-780.964	mm	с		0.000	
工具手	当前位署					
x	520.991]mm	A	-11	79.994	
x Y	520.991 134.387]mm]mm	A B	-1	79.994 80.000	
x Y z	520.991 134.387 43.083]mm]mm]mm	A B C	-11	79.994 80.000 0.000	
x Y Z	520.991 134.387 43.083]mm]mm]mm	A B C	-11	79.994 80.000 0.000	

图 2.11 标定出信息查看

第12步:进入传送带"设置"界面,对传送带的抓取范围进行设置。我们通过"示教"a、b两点来限制机器人工作范围。点击"向前"进入下一步。

		1		(A)	(a)
MConve	yorBelt	$\mathbf{\nabla}$	已初试化	✓ 己使能	
工作区					
最小	а	20	00.00 mm	示教	
最大	ь	80	00.00 mm	示教	
在概觉页	面中自动 肩	印停 功能需	收活。		
图示	_		c	_	
	•	refSys			
a 最大口 b 最小口 c 工作区 d 传送者	二作区域位 二作区域位 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	erSys a a a a a a a a a a a a a		→	

图 2.12 传送带工作区域设置

第13步:对机器人接收物件信息的范围进行设置。我们通过"示教" e、f 两点来限制机器人接收物件信息的范围,正常情况下: e<a、f<b。点击"向前"进入下一步。

MConve	yorBelt	Z 24	刃试化	🖌 己使能	. 🗸
接受区域根	反限				
最小	e	100.00	mm	建i	Ŷ.
最大	f	750.00	mm	示	敗
物件跟踪,	只有在接受	区域时才能激活(e 使用COI	VVEYOR.Wai	(指令)
199 L.L. Internet 3	NH1LIXX	CANT A BERKIG	2 mcon	TOR. Wal	11 21
"建议" 打	安钮会使用	前一工作站的最	大接受区	域作为当前的	1最小接受
区域。					
701					
到示					
	4	refSys h			
			-		
• T (FIX	- fa0	· · · · ·	-		
c工作区	[域	•	-		
c 工作区 e 最小接	[域 (域) (受位置)		•		
c 工作区 e 最小接 f 最大接	 (域 (受位置 受位置		4		
c 工作区 e 最小接 f 最大接 g 接交区	↓ 「域 その置 受位置 (域)		4		
c 工作区 e 最小接 f 最大接 g 接受区 h 允许区	 受位置 受位置 <域 <域	<u>, </u>	<u>.</u>		
c 工作区 e 最小接 f 最大接 g 接受区 h 允许区 i 限制区	域 受位置 受位置 気域 気域 域 域	<u> </u>	4		
c 工作区 e 最小接 f 最大接 g 接受区 h 冗许区 i 限制区	↓ 受位置 受位置 《域 《域	<u> </u>	4		
c 工作区 e 最小接 f 最大接 g 接受区 n R制区 限制区	【域 受位置 受位置 《域 《域	<u> </u>	<u>.</u>		
c工作区 e最小核 f最大接区 n 我受区 n 限制区	愛位置 愛位置 愛位置 気域 気域 域	<u> </u>	<u> </u>		
c工作 G e最小接 f最大接 G g接受 G h允许 G i限制 区	 受位置 受位置 【域 域		1		

图 2.13 机器人接收物件信息的范围设置

第14步:工作区域起点同步距离设置。点击"向前"进入下一步。

传输带				
M ConveyorBelt	T E	目初试化	🖌 己使能	
工作区起点				
同步距离		J	10.00	mm
✔ 増大同步				-
距离如需要时				
示意图示例机器人在最	小工作区边非	8停止等待	下一个待追踪	目标.
在同步距离内机器人加	速传输带速度	ξ.		
图示				
×.	1.	1	- 1	
	-		-	
	Y	/		
	1			
		K		
	3			
1最小工作区				
the second of th				
同步距离				
同步距离 (工具手速度				
同步距离 (工具手速度 传输带速度(相当于				
同步距离 (工具手速度 传输带速度 (相当于 目标追踪速度)				
同步距离 (工具手速度 传输带速度 (相当于 目标追踪速度)				
同步距离 (工具手速度 传输带速度 (相当于 目标追踪速度)				
同步距离 (工具手速度 传输带速度 (相当于 目标追踪速度)				
同步距离 (工具手速度 传输带速度(相当于 目标追踪速度)				

图 2.14 工作区域起点同步距离设置

第15步:工作区域终点停止距离设置。点击"向前"进入下一步。

MConveyorBelt	▼ 己初试化	✓ 己使能	
工作区终点			
同步距离	m	10.0	0 mm
✔ 増大同步			
距离如需要时			
示意图示例当道踪中的目标 在同步距离内机器人减速至	⊷移出可达区域. 5静止.		
图示			
	m n	b x	
 b最大工作区 m同步距离 n工具手速度 o 传输带速度 (相当于目标追踪速度) 			
取消		< 后退	向前 >

图 2.15 工作区域终点停止距离设置

第16步: 智能目标规划平滑因子设置。点击"完成"。

M ConveyorBelt 文 記初試化 文 已使能 文 已使能 文 化目标规划设置 評能目标规划设置 平滑因子 國 國 國 四平滑移动选型被激活则在等待下一个追踪目标的静止时间段将截入化. 資本化. 意小化. 書減速度使用柔性的加減速度序列导致移动操作更加平频. 制定机器人移动时候使用滑块. 向右移动增加加減速序列柔性.	专输带				
P能目标规划设置 平滑因子 同	M ConveyorBelt		已初试化	✓ 己使能	
平滑因子 同	智能目标规划设置				
平滑因子 内 3 四半滑移动选型被激活则在等待下一个追踪目标的静止时间段将被 30个化。 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 4. 2. 4. 2. 4. 2. 4					
平滑因子 Image:					
PU 多 可平滑移动选型被激活则在等待下一个追踪目标的静止时间段将被 贵小化. 遣碱速度使用柔性的加碱速度序列导致移动操作更加平顺. 角定机器入移动时候使用滑块,向右移动增加加减速序列柔性.	平滑因子				
PP 3 中平滑移动选型被激活则在等待下一个追踪目标的静止时间没将被 改小化. 激减速度使用柔性的加减速度序列导致移动操作更加平顺. 角定机器人移动时候使用滑块.向右移动增加加减速序列柔性.					
內 四平滑移动选型被激活则在等待下一个追踪目标的静止时间段将著 2小化. 2. 2. 2. 2. 2. 2. 2. 3. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4					
□平滑移动选型被激活 则在等待下一个追踪目标的静止时间段将着 δ小化. 整减速度使用柔性的加减速度序列导致移动操作更加平顺. 角定机器人移动时候使用滑块. 向右移动增加加减速序列柔性.	刚		-		柔
□平滑移动选型被激活 则在等待下一个追踪目标的静止时间没将 耐小化. 差减速度使用柔性的加减速度序列导致移动操作更加平顾. 角定机器人移动时候使用滑块. 向右移动增加加减速序列柔性.					
n平滑移动选型被激活则在等待下一个追踪目标的静止时间段将 最小化。 盖碱速度使用柔性的加碱速度序列导致移动操作更加平顺。 角定机器人移动时候使用滑块,向右移动增加加碱速序列柔性。					
370. 建减速度使用柔性的加减速度序列导致移动操作更加平顾. 备定机器人移动时候使用滑块,向右移动增加加减速序列柔性.	四平滑移动选型被激剂	f 则在等待	下一个追踪	目标的静止时间	段将被
^角 定机器人移动时候使用滑块, 向右移动增加加减速序列柔性.	。 臺減速度使用柔性的加	口减速度序	列导致移动	桑作更加平顺.	
	确定机器人移动时候有	市用滑块,直	自右移动增加	加减速序列柔性	ŧ.

图 2.16 智能目标规划平滑因子设置

以上就是五点示教和三点示教的所有步骤。完成以后可以编写简单的抓放程序,用标定快来检验五点示教或三点示教是否准确,如果抓取有微小偏差,可以 去示教器全局下修改所示教的坐标系统的 X 和 Y 值。

3 检验与修调

做完五点示教(或三点示教)以后,我们需要对其精度进行验证,进行扎针 测试。

首先,将传送带速度提高到正常运行速度,开启机器人,使其在等待点等待; (保证相关点位示教正确)

其次,在传送带上放置一个物件,让相机拍照或者去触发传感器,生成物料 信息,物料进入工作区域以后,机械手去跟踪,观察针尖与物料中心之间的距离 偏差。

最后,根据笛卡尔坐标系,调整所示教的坐标系统的的 X 值和 Y 值。例如: crs0, crs1(前提是保证 Get1 H, Get1 L 的 X 值和 Y 值为 0)。具体方法如下:

如果机械手末端抓手为单抓,且不存在机械偏差。修改坐标系统,例如 crs0, 以下均已 crs0 为例,具体修改方法如下:

(1) 传送带上放置 0 度和 90 度的物料;

(2) 观察抓取的时候 X 和 Y 方向有没有偏,如果有,观察具体朝什么方向 偏;

(3)如果偏向 Y 负方向(右手定则),则需在 crs0 的 y 值加相应的偏差值, 反之则需在 crs0 的 y 值减相应的偏差值。

(4)如果偏向 X 负方向(右手定则),则需在 crs0 的 x 值加相应的偏差值,反 之则需在 crs0 的 x 值减相应的偏差值,再次去执行同样的方法,直到校正为止。

ක 400-653-7789 ද www.tjchenxing.com

天津总部

辰星 (天津) 自动化设备有限公司 地址: 天津淀海新区南海路156号 邮箱: sales@tjchenxing.com Tianjin Headquarters Chenxing (Tianjin) Automation Equipment Co., Ltd. Address: No. 156 Nanhai Road, Binhai New District, Tianjin Email: sales@tjchenxing.com

江苏子公司

辰星 (苏州) 自动化设备有限公司

地址: 江苏省苏州市吴江经济技术开发区联杨路139号

邮箱: maguosong@szchenxing.com

Jiangsu subsidiary Chenxing (Suzhou) Automation Equipment Co., Ltd. Address: No. 139 Lianyang Road, Wujiang Economic and Technological Development Zone, Suzhou City, Jiangsu Province Email: maguosong@szchenxing.com

东莞办事处

地址: 东莞市虎门镇体育路555号

Dongguan Office Address: No. 555 Tiyu Road, Humen Town, Dongguan City

Copyright 2019 阿宣木机器人、保留所有权。